
1 

 
Faculty of Science, Engineering and Computing  

 
Full Module Guide 2015/16 

  

CI4100   Programming 1 

Staff  Name Room Phone Contact email and consultation hours 

Module 
leader 
 

Paul Neve 
(PN) 

SB3013 020 8417 7041 
 
KU Ext: 67041 

paul@kingston.ac.uk 
 
Consultation hours: 
Thursday 10am-noon 
Friday 10am-noon 
 

 

Teaching schedule 
information 

You will be able to access your timetable for the 2016/17 academic 
year via the University mobile app or via OSIS (the Online Student 
Information System).  More information on all aspects of timetabling 
can be found on the MyTimetable pages on MyKingston. 

 
In weeks 1-5 lectures take place at 2pm on Monday afternoons in PRSB2025 (the Roberts 
Lecture Theatre). Workshops take place in SB2022/3 on Wednesday mornings; you will be 
allocated into either the 9am or 11am slot. 
 
After the first enrichment week, lecture times and locations will change and will depend on which 
group you are assigned to.  
 

 Please consult OSIS, Studyspace and your KU email regularly to confirm times and 
locations of lectures and workshop sessions. These are subject to change! 

 

 Note that it has been known for the published online timetable on OSIS or the 
MyTimetable pages to take time to catch up with any changes. Thus you should 
ALWAYS check Studyspace the start of each week. Changes will also be 
emailed to your university email account. Check this too! 
 

 If Studyspace, an email, or something your lecturer tells you sent to you contradicts 
the timetabling app or OSIS, Studyspace, email or the lecturer should be 
considered the authoritative source! 

 
 

 

In-course 
assessment 

These dates are 
indicative. 

Consult 
Studyspace for 
up-to-date 
information on 
assessment. 

Type % Due dates Feedback  

Weekly 
workshop 
activities 

60% Unit 1: Mon 7th November 12:01am 
Unit 2: Mon 9th January 12:01am 
Unit 3: Mon 20th February 12:01am 
Unit 4: Fri 31st March 5pm 

Immediately via 
NoobLab 

Clicker 
questions 
during lectures 

40% Every week Immediately, 
discussed in class 
after the question 

mailto:paul@kingston.ac.uk


2 

MODULE SUMMARY  

 
Welcome to the module! 
 
The aim of the module is to provide a foundation for all programming activities that 
follow in subsequent years of your course. We do not assume that you have previous 
experience of programming; we start from the very beginning. We try to develop your 
ability to break problems down and “think like a programmer” before we break your 
brain with complex programming languages and more advanced concepts. 
 
There is a misconception that programming is “hard” or “boring”. My job is to persuade 
you that it’s not. We try to make the material as engaging and fun as possible and we 
make use of our own homegrown NoobLab environment to do so. 
 
Students doing Object Oriented Programming will do the units Thinking Like A 
Programmer and Programming in JavaScript with Paul before Christmas. They will 
then go off to do C++ with Ahmed. 
 
Students doing Programming 1 will do four out of five possible units. At the end of 
Thinking Like A Programmer we will take a look at your progress. You will then be 
allocated into either Team Skywalker or Team Solo. This will then determine which 
units you will do as follows: 
 

 
 
During Enrichment Activity Week (week 6 of term) I will look at your progress. Those 
of you who have demonstrated an aptitude for the material in Thinking Like A 
Programmer will join Team Skywalker and will focus more on Java with on Object 
Oriented principles in the latter part of the module. Those of you who need a little 
more support will not do as much Java, and you’ll look at Web application 
programming instead as a member of Team Solo. Both routes through the module 
carry the same assessment weight and will set you up for Programming 2 in the 
second year. Neither route is “better” and it is possible to get 100% for the module 



3 

regardless of which route you end up following. What we want to do is to give 
everyone the best possible chance of success, and the best possible chance to 
maximise their potential. 
 
 
LECTURE PROGRAMME 
 
Each unit consists of five lectures with associated workshops. This is an indicative 
schedule and may be subject to change. 
 
Thinking Like a Programmer (Both groups) 
 

Week of Subject 

Sep 26 Introduction to the Module 

Oct 3 Fundamental programming constructs 

Oct 10 Booleans and more on functions 

Oct 17 Moving to “real” code 

Oct 24 Orange Event 

 
Programming in Javascript (both groups – Team Skywalker do this as their 
second unit, Team Solo do this as their last unit) 
 

Week of 
(Skywalker) 

Week of 
(Solo) 

Subject 

Nov 7 Feb 22 Introduction to Javascript 

Nov 14 Mar 29 Functions and variables 

Nov 21 Mar 7 HTML and the Document Object Model (or “everything 
you’ve learned is a lie”) 

Nov 28 Mar 14 Events on the DOM and creating interactivity 

Dec 5 Apr 4 Orange Event 

 
The Basics of Web Programming (Team Solo) 
 

Week of Subject 

Nov 7 The basics of HTML 

Nov 14 Links, images, forms and multi-page sites 

Nov 21 Introduction to PHP 

Nov 28 Reading form data with PHP 

Dec 5 Orange Event 

 
Introduction to Java (both groups) 
 

Week of Subject 

Jan 09 The basics of the Java language 

Jan 16 Conditional and loop constructs / arrays 

Jan 23 Introduction to object orientation (or “everything you’ve learned is a 
lie”) 

Jan 30 “Madness in the Methods”: parameters, return values and 
constructors 

Feb 06 Orange Event 

 



4 

Object Oriented Programming in Java (Team Skywalker only) 
 

Week of Subject 

Feb 20 Encapsulation and packaging 

Feb 27 Arrays of Objects / Inheritance 

Mar 6 Collections 

Mar 13 Java programming in the real world: IDEs and bringing it all together 

Mar 20 Orange Event 

 
WORKSHOP/SEMINAR/TUTORIAL PROGRAMME 
The 2 hour lecture each week will be supplemented by a 2 hour hands-on workshop 
session. Please see Studyspace and OSIS for details of the location and times. During 
enrichment weeks, we will endeavour to provide additional support available in the 
form of optional “codebash” sessions. Look for announcements on Studyspace. 
 
6 Assessment 
 

There are several ways you will be assessed on this module.  
 
Practical Work: 60% 
 
Each and every NoobLab medal you win contributes towards your final module mark. 
We break this down by unit as follows: 
 

Team Skywalker Team Solo 

 Practical work for Thinking Like A 
Programmer: 15% 

 Practical work for Programming in 
Javascript: 15% 

 Practical work for Introduction to 
Java: 15% 

 Practical work for Further Java: 
15% 

 Practical work for Thinking Like A 
Programmer: 15% 

 Practical work for Introduction to 
Web Programming: 15% 

 Practical work for Introduction to 
Java: 15% 

 Practical work for Programming in 
Javascript: 15% 

 
In-class Questions: 40% 
 
The remaining 40% of your marks will come from questions you answer in class. You 
will be asked questions in two settings. Every so often during lectures a slide with an 
orange background will appear containing a question for you to answer with your 
clicker. Your answers to these questions will be added to an overall total for the unit. 
Then, at the end of each unit will be an Orange Event. An Orange Event is a special 
lecture during which there will ONLY be orange slides. The regular in-lecture Orange 
slides are designed to see whether you’ve been paying attention and assimilating the 
information given during the lecture. The Orange Events are designed to test your 
knowledge of everything that’s been covered during the unit as a whole.  
 
Orange Slides count towards your final mark! You could, mathematically speaking, 
pass the entire module just on Orange Slides! So, you need to be paying attention 
during lectures – and you need to make sure you’re at every lecture, too! When you 
miss lectures you will miss marks. 



5 

 
Important note 
It is also crucial that you bring your clicker to each and every lecture and 
workshop. If you do not do so then not only do you risk missing out on marks, 
but it will also affect your attendance record. If you don’t have your clicker and 
don’t answer the questions during a lecture, we have no way of knowing 
whether you were there! 
 
You should follow all instructions given on Studyspace and on NoobLab. It is important 
that if you have any queries that you ask one of the module team for clarification. 
 

You are reminded of the faculty policy for the late submission of coursework. Any work 
submitted up to a week late will be capped at 40%, anything submitted later than this 
will receive a zero mark. 
 
You are also reminded of the university regulations regarding plagiarism and other 
forms of academic misconduct. We take these very seriously. If you cheat, you will 
be found out, you will most likely fail the module, and you might even jeopardise your 
university registration. We will spend some time discussing what is acceptable and 
what is not in the first lecture. Make sure you understand this. Ignorance is NOT an 
excuse! 
  
“If you are ill or have problems affecting your studies, the University Mitigating 
Circumstances policy may apply.  You will need to complete a form and attach 
suitable independent documentation. Remember if you submit a piece of work or 
attend an examination, you have judged yourself fit to undertake the assessment and 
cannot claim mitigating circumstances retrospectively. Students who wish to make a 
mitigation claim submission may do so via the webpage (or My Kingston > My Faculty 
> Science, Engineering and Computing > SEC Mitigating Circumstances).” 
 
Vivas 
 
The module team reserves the right to ask you to attend a viva about submitted work. 
At such a viva you will be asked to explain how the code in the submitted work 
operates and the processes you used to create it. If you are not able to satisfactorily 
explain your own work then we reserve the right to deduct some or all of the marks 
awarded for it. 
 
Feedback on Assessment 
 
Feedback and advice on your workshop activities and your medal-winning activities 
will be given in class either upon request or as the teaching team observe you. You 
will also receive feedback on activities directly from the NoobLab environment. 
Answers and feedback to in-class questions and tests will be given immediately 
afterwards, as part of the scheduled event in which the question/test takes place. 
 
You may also receive feedback and/or feedforward by email from the team 
commenting on your progress as a whole, and general feedback/feedforward will be 
available for the cohort as a whole on Studyspace.  
 
It is important to pay close attention to feedback when it is received. 
 

https://mykingston.kingston.ac.uk/myfaculty/sec/secstudentsupportMC/Pages/Mitigating-Circumstances.aspx


6 

Late Feedback 
 
We are committed to our students receiving timely feedback and would like to remind 
you that you can let us know of any delays that occur in receiving feedback from work 
you have submitted for marking. We have set up an electronic noticeboard for this 
purpose:  
  
SEC_Assessment_Feedback_Delay_-_UG_NB@kingston.ac.uk  
  
If you have not received feedback within the timeframe you expected then please 
send us the details – we need the module code and the date you submitted the work.  
We will then pick up your message and look into the matter. 
 
CHANGES MADE AS A RESULT OF STUDENT FEEDBACK 
 
In the past the formal student feedback mechanisms have produced only positive 
feedback in terms of the module structure and teaching approaches. Thus we do not 
intend to make any significant changes that might negatively affect this. However, one 
area where past students have lodged objections is with respect to timetabling 
because, in previous years, lectures have been scheduled AFTER workshops. 
Thankfully, this year this appears not to be the case. 
 
READING LIST 
 
Please note the books given in the Module Descriptor are indicative and 
represent an old version of the module. The core texts for the module this year 
can be found in the ‘My Reading list’ tab in StudySpace. They are also below for 
your convenience.  
 
However, be warned: I give a reading list solely because I am required to do so. I 
would prefer NOT to give a list of textbooks at all. Programming is a practical, 
hands-on activity that is fast-moving in terms of best practice. Do not make the 
mistake of thinking that there is a “holy grail” textbook out there that turns people into 
amazing programmers just by the act of possessing it! Textbooks can quickly become 
out of date. The best way to become a proficient programmer is by practicing your 
programming – not by reading a textbook! I do NOT recommend spending any 
serious amount of money on textbooks! 
 
With that health warning, here are the suggested texts for the module this year: 
 
Jon Duckett: HTML & CSS: Design and Build Web Sites (Team Solo only) 

 http://www.amazon.co.uk/HTML-CSS-Design-Build-
Sites/dp/1118008189/ref=la_B001IR3Q7I_1_1?s=books&ie=UTF8&qid=14392
0 

  
Jon Duckett: JavaScript and JQuery: Interactive Front-end Web Development 

 http://www.amazon.co.uk/JavaScript-JQuery-Interactive-Front-end-
Development/dp/1118531647/ref=la_B001IR3Q7I_1_3?s=books&ie=UTF8&qid
=1439202657&sr=1-3 

 
Lynn Beighley and Michael Morrison: Head First PHP and MySQL (Team Solo only) 

 http://www.amazon.co.uk/Head-First-MySQL-Lynn-Beighley/dp/0596006306 

http://www.amazon.co.uk/HTML-CSS-Design-Build-Sites/dp/1118008189/ref=la_B001IR3Q7I_1_1?s=books&ie=UTF8&qid=143920
http://www.amazon.co.uk/HTML-CSS-Design-Build-Sites/dp/1118008189/ref=la_B001IR3Q7I_1_1?s=books&ie=UTF8&qid=143920
http://www.amazon.co.uk/HTML-CSS-Design-Build-Sites/dp/1118008189/ref=la_B001IR3Q7I_1_1?s=books&ie=UTF8&qid=143920
http://www.amazon.co.uk/JavaScript-JQuery-Interactive-Front-end-Development/dp/1118531647/ref=la_B001IR3Q7I_1_3?s=books&ie=UTF8&qid=1439202657&sr=1-3
http://www.amazon.co.uk/JavaScript-JQuery-Interactive-Front-end-Development/dp/1118531647/ref=la_B001IR3Q7I_1_3?s=books&ie=UTF8&qid=1439202657&sr=1-3
http://www.amazon.co.uk/JavaScript-JQuery-Interactive-Front-end-Development/dp/1118531647/ref=la_B001IR3Q7I_1_3?s=books&ie=UTF8&qid=1439202657&sr=1-3
http://www.amazon.co.uk/Head-First-MySQL-Lynn-Beighley/dp/0596006306


7 

 
Cay Horstmann: Big Java (late objects) 

 http://www.amazon.co.uk/Big-Java-Late-Objects-
Horstmann/dp/1118087887/ref=sr_1_1?s=books&ie=UTF8&qid=1442237249&
sr=1-1&keywords=big+java+late+objects 

http://www.amazon.co.uk/Big-Java-Late-Objects-Horstmann/dp/1118087887/ref=sr_1_1?s=books&ie=UTF8&qid=1442237249&sr=1-1&keywords=big+java+late+objects
http://www.amazon.co.uk/Big-Java-Late-Objects-Horstmann/dp/1118087887/ref=sr_1_1?s=books&ie=UTF8&qid=1442237249&sr=1-1&keywords=big+java+late+objects
http://www.amazon.co.uk/Big-Java-Late-Objects-Horstmann/dp/1118087887/ref=sr_1_1?s=books&ie=UTF8&qid=1442237249&sr=1-1&keywords=big+java+late+objects


8 

Appendix: Module Descriptor 

 
MODULE CODE: CI4100     LEVEL: 4   CREDITS: 30 
 
TITLE: Programming I 
 
PRE-REQUISITES:  
 
CO-REQUISITES:  
 
MODULE SUMMARY (INDICATIVE)  
 
This module will be taken by first year (level 4) students enrolled on Computer Science, 
Software Engineering, Information Systems and Joint Honours degrees. It is not assumed that 
students have prior programming experience. The teaching and learning is split between 
several units that will be directed at specific subsets of the above cohorts.  
This provides each cohort with a schedule of activity that is appropriate for their background 
and future needs, while allowing a general visibility and structure of material for the entire 
year.  
 
AIMS (DEFINITIVE) 

 To introduce the essential concepts for a computer program  

 To develop students’ enthusiasm for, confidence in, and experience with programming 
by using practical examples 

 To compare the similarities and differences of common programming languages 

 
LEARNING OUTCOMES (DEFINITIVE) 
 

On successful completion of the module, students will be able to: 

1. Decompose a programming task into a set of smaller sub-tasks, expressed using 
standard control flow structures independent of any specific computing environment. 

2. Demonstrate an understanding of the relevant structure and syntax of at least  two 
programming environments, such as language-specific source code and/or mark-up 
languages permitting procedural instruction. 

3. Demonstrate the appropriate use of variables, arrays of variables, expressions, 
subroutines, and conditional and iterative control flow structures. 

4. Demonstrate an understanding of elementary object oriented concepts, such as classes 
and objects. 

5. Use the available library methods to incorporate into their work some elementary user 
input, and visual output; where necessary testing the validity of such input, and 
appropriately structuring the output. 

6. Write and use simple tests to validate the structured documents and software 
components they have written; use appropriate tools (such as debugging environments) 
to locate and fix errors that they find. 

   

 
 

CURRICULUM CONTENT (INDICATIVE) 

 Introduction to programming concepts in a language independent environment, such 
as variables, conditions, iterations and subroutines. 

 Analysis of and practice at the expression of programming tasks as algorithms using 
these programming concepts. 



9 

 Introduction to variables, data types, logical & arithmetic operators, expressions, 
statements, conditions, and loops, using programming languages such as Java, 
Javascript, and C/C++.  

 Drawing shapes on grids to make games. Using mouse input. Model-view controller, 
arrays. 

 Introduction to the HTML syntax, structure, common elements; use of style sheets 

 Javascript for form processing and other interactive components in an HTML page  
 

 
TEACHING AND LEARNING STRATEGY (INDICATIVE) 

The module material will be divided into approximately 7 units of taught material, unit topics to 
include problem solving, HTML, Javascript, Java and C++ Students will be directed to engage 
in four units, according to the required emphasis of their course.  
Each unit will consist of approximately 11 hours of lecture, 11 hours of practical and a further 
44 hours of self-directed study.  
 
In addition to these units of activity, a further 6 hours of lecture and 6 hours of Practical will be 
scheduled for specific activity weeks and revision weeks during the semester. A further 32 
hours of self-directed study is advised during these periods.  
 
BREAKDOWN OF TEACHING AND LEARNING HOURS 
 

DEFINITIVE KIS CATEGORY INDICATIVE DESCRIPTION HOURS 

Scheduled learning and teaching  Lectures, tutorials, workshops, and 
exercises.  

100 

Guided independent study Online learning materials including 
guided exercises and formative tests 
(with integrated support and automatic 
feed forward to tests). 

200 

 Total 300 

 
 
 
ASSESSMENT STRATEGY (INDICATIVE) 
 
In order to help students on this module achieve their full potential, formative assessment 
opportunities will be provided as appropriate throughout the module. Examples of formative 
assessments include worked exercises which emulate aspects of the major assessment and 
lab work. Feedback on coursework represents an additional opportunity for formative learning 
and will be given in writing and/or verbally. Formative feedback will be will be provided in 
various forms such as during short (10 - 15 minutes) feedback sessions. The formative 
feedback is designed to inform student preparation for the summative assessment which may 
be within the same module or feed forward across the degree programme. 
 
MAPPING OF LEARNING OUTCOMES TO ASSESSMENT STRATEGY (INDICATIVE) 
 
 

LEARNING OUTCOME ASSESSMENT STRATEGY 

On completion of the module, students will 
be able to: 

 

1) Decompose a programming task into a 
set of smaller sub-tasks, expressed 
using standard control flow structures 
independent of any specific computing 

In-class multiple choice tests to establish 
basic ontology and concepts. Group 
exercises to solve problems, assessed 
through presentations.  



10 

environment. 

2) Demonstrate an understanding of the 
relevant structure and syntax of at 
least  two programming environments, 
such as language-specific source 
code and/or mark-up languages 
permitting procedural instruction. 

Weekly assignments (coursework) 
comprising a set of graded exercises. In-
class multiple choice tests to assess 
understanding and recall of syntax & 
structure.  

3) Demonstrate the appropriate use of 
variables, arrays of variables, 
expressions, subroutines, and 
conditional and iterative control flow 
structures. 

In-class tests in which students modify 
source code to change the specification of 
a program. 

4) Demonstrate an understanding of 
elementary object oriented concepts, 
such as classes and objects. 

In-class tests in which students modify 
source code to change the specification of 
a program.  

5) Use the available library methods to 
incorporate into their work some 
elementary user input, and visual 
output; where necessary testing the 
validity of such input, and 
appropriately structuring the output. 

Weekly assignments (coursework) 
comprising a set of graded exercises. 

In-class tests in which students work on 
similar problems, in an open-book 
environment 

6) Write and use simple tests to validate 
the structured documents and 
software components they have 
written; use appropriate tools (such as 
debugging environments) to locate 
and fix errors that they find. 

Individual or Group assignment in which 
they inspect, debug, test, fix and modify an 
example computer program. 

 
 
BREAKDOWN OF MAJOR CATEGORIES OF ASSESSMENT 

DEFINITIVE KIS 
CATEGORY 

INDICATIVE DESCRIPTION PERCENTAGE  

Coursework  Portfolio of in-class tests; multiple choice tests; 
weekly graded exercises; implementations 

100% 

 Total 100% 

 
ACHIEVING A PASS (DEFINITIVE) 
 
It IS NOT a requirement that any major assessment category is passed separately in order to 
achieve an overall pass for the module 

 
BIBLIOGRAPHY (INDICATIVE): 
 
Core Text(s): 
 
Robertson, L.A (2004). “Simple Program Design: A step by step approach”. Thomson. 

Charatan, Q. and Kans, A. (2009) Java in two semesters, 3rd edn. London: McGraw Hill 
Higher Education 

J. Zeldman and E. Marcotte (2010),  “Designing with Web Standards", New Riders 

 



11 

Recommended Reading: 
 
Sprankle M (2006). “Problem Solving and Programming Concepts”. Pearson. 

Lewis J and Loftus W (2007). “Java Software Solutions: Foundations of Program Design”. 
Addison-Wesley. 

Charatan Q and Kans A (2001). “Java the first semester”. McGraw-Hill.  

Currie, Edward (2006) Fundamentals of programming using Java. London: Thomson 
Learning. 

Rasmussen, R., Mughal, K. and Hamre T. (2007) Java actually: a first course in programming. 
London: Thomson Learning. 

Vickers, Paul (2008) How to think like a programmer: problem solving for the bewildered. 
London: Cengage Learning. 

Savitch, W. (2010) Absolute Java, 4th International edn. London: Pearson Education 

Horstmann, Cay S. (2010) Big Java, 4th edn., International student version. Hoboken, N.J.: 
Wiley. 

P. Carey (2006), “Creating Web Pages with HTML, XHTML, and XML”, Thomson Course  

Technology 

D. Oliver and M. Morrison (2003), "Teach Yourself HTML and XHTML in 24 Hours", SAMS  

D. Gosselin, (2003) "Introductory XHTML", Thomson Course Technology 

P. K. Yuen and V. Lau, (2003), "Practical Web Technologies", Addison-Wesley 

A. Walter (2010), “A Holistic Approach to Web Design", New Riders 

 


