

What is a computer?

 At its simplest, a computer is a collection of wires,

transistors and electrical components that are connected in

a specific way

 When you send certain sequences of voltages down the

wires, you will get other sequences of voltages back out

again

 We, as humans, choose to interpret the presence or absence

of a voltage as a 1 or a 0

 We, as humans, choose to interpret certain sequences of

voltages as "adding", others as "subtracting" and so on

 The part that does the adding and comparing is the Central
Processing Unit (CPU)

 The display is the screen (or LCD display, or whatever)

 The CPU stores data in
Random Access Memory
(RAM), often simply referred
to as just memory

 The hard disk provides
permanent storage – the
content of memory is lost
when the computer is turned
off

 The hard disk also provides
substantially more storage
than memory – but is
millions of times slower

 A computer can also be a said to be a layer cake of

encodings:

 Consider eight wires where the second and eighth wire have a

voltage, and all others have no voltage

 We would represent this as the binary number 01000001

 This is 65 in decimal…

 …but it might also be the letter "A" if we were storing text in the ASCII

encoding system!

 We can interpret the 0’s and 1’s
in computer memory any way
we want.
 We can treat them as numbers.

 We can encode information in those
numbers

 Each 0 or 1 is a bit

 Eight of these is a byte

 Which we can, in turn, interpret as a
decimal number

 (Remember that even the
notion that the computer
understands numbers at all is an
interpretation!
 We always talk about 0's and 1's but the

reality is that computer data is voltage
on wires. If there is a voltage, we say
there's a 1 – if not, a 0.)

 Humans work in decimal notation

 We count from 1 to 9, then the next number is 10

 We might also refer to decimal as "base 10" – i.e. we get to ten

before we increment the leading digit

 There are other number systems apart from decimal

 Base 16 or hexadecimal (hex)

 We count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F before

incrementing and getting to "10".

 In hex, "10" does not mean ten – it is actually sixteen!

 Base 2 or binary

 We only use the digits 0 and 1

 We count 0, 1, 10, 11, 100, 101, 110, 111, 1000…

 which is zero, one, two, three, four, five, six, seven, eight…

 Consider the binary number 10110101

 The transistors inside a computer can be considered a collection of

electrical switches that make electricity flow this way or that way

 The presence of electricity (or not) represents data – our 1's and 0's

 A program is simply a combination of switch settings that cause the

computer to produce a particular combination of voltages

 As we've seen, we interpret those voltages to be numbers, text, or

even multimedia such as images or sound.

 We interpret a particular combination of switch settings to be

instructions to do addition, subtraction, loading, storing, etc

 Machine language if represented in a human readable form

looks like a load of numbers

 Assembler is a set of words, symbols and letters that

correspond to the machine language

 It's a one-to-one relationship

 Usually, a word of assembler equals one machine language

instruction – often just a single byte

LOAD 10,R0 ; Load special variable R0 with 10

LOAD 12,R1 ; Load special variable R1 with 12

SUM R0,R1 ; Add special variables R0 and R1

STOR R1,#45 ; Store the result into memory location #45

Might appear in memory as just 12 bytes:

01 00 10

01 01 12

02 00 01

03 01 45

 Writing all of our programs in binary would be very

inconvenient!

 Even writing our programs in assembler would be a drag

 The instructions (or operation codes) are often inscrutable

 Each CPU has a different instruction set

 Instead, one option is to use high level programming

languages such as Java

 High level languages are more like English and are (in

theory) easier for human beings to understand

 However, programs in high level languages must be

converted into machine code before they can be run

 Machine code is very difficult to understand – even if translated
into assembler

 High level programming languages, such as Java, Javascript, C,
C++, C# etc are easier to understand, and use commands that are
more like English

 Because computers do not understand high level languages, they
must be translated into machine code before they can run

 …so programming languages, ultimately, are just another suite of
encoding layers

 High level languages might be interpreted or compiled

 Compiled means that the entire program is converted into machine
code before it is run

 Interpreted means that the program is translated into machine code
while it is being run

Program written

in high-level

language,

e.g.,

Java

Instructions in

binary format

(machine

code)

Compiler or

Interpreter

Programmer writes this

Computer can run this

 Compiled languages perform much faster once a program is

running, but you have to compile the code first

 Interpreted languages start running more quickly because

there's no initial need to compile the code, but are much

slower once they're running

 Interpreted languages can be easier to write programs for,

not because the languages themselves are necessarily

"easier" to understand, but because you can make changes

and corrections to the code and try them out much more

quickly

 The compiler in a compiler language "sees" the whole

program at once, so might give information about all the

errors in a program before the program runs

 Java is a general purpose language

 Java is platform independent

 Java is an object-oriented language

 There are different ‘editions’ of Java – we are using Java SE

 Recap

 High level languages might be interpreted or compiled

 Compiled means that the entire program is converted into machine
code before it is run

 Interpreted means that the program is translated into machine code
while it is being run

 Java is a bit different: Java programs are compiled to Java
bytecode

 Bytecode is not machine code for a particular CPU type, but
instead runs on the Java Virtual Machine or JVM

 The JVM is available for all major desktop computing
platforms, embedded devices, mobile devices, etc

 The JVM interprets the bytecode into the machine code of
the target platform

 thus Java is both compiled AND interpreted!

 Think of bytecode as being like the machine code for a

fictional* CPU

 This fictional CPU has its own instruction set - just as an x86

processor has an instruction set, or an ARM processor has an

instruction set

 The JVM is basically a program that simulates this fictional

CPU – so your bytecode runs within the simulation

 Anyone ever play vintage computer games on emulator

programs?

 Anyone ever hear of the Sinclair Spectrum?

 Vital statistics:

 RAM:

 48K

 Processor:

 8 bit, Z80, 3.5Mhz

The average modern

handheld calculator

probably has better specs

than the poor old Speccy…! 

 Point your browser at

 http://torinak.com/qaop

 The QAOP website provides an authentic simulation of EVERY
aspect of a Sinclair Spectrum

 It simulates

 the CPU

 the graphics hardware

 the keyboard

 the display hardware

 everything that was part of a Sinclair Spectrum

 Spectrum programs can't (ordinarily) run on a PC – the CPU is
different, the graphic hardware is different, the way a PC gets
signals from input devices (e.g. keyboard, mouse, etc) is different

 …however, Spectrum programs CAN run on our simulated Spectrum

 …and our simulated Spectrum is just a Javascript program, that runs
in our browser, which in turn runs on our PC!

 (that's at least three levels of interpretation going on)

 Think of bytecode as being like the machine code for a

fictional* CPU

 This fictional CPU has its own instruction set - just as an x86

processor has an instruction set, or an ARM processor has an

instruction set

 The JVM is basically a program that simulates this fictional

CPU – so your bytecode runs within the simulation

 …just as our Spectrum games ran within our simulation of the

Spectrum computer!

* actually, there ARE some hardware implementations of this "fictional"

processor – i.e. CPUs whose instruction set is the same set of instructions as

Java bytecode.

 You can download either the Java Runtime Environment

(JRE) or the Java Development Kit (JDK) from Oracle's

website

 Just Google Java JRE or Java JDK

 The latest version at the time of writing is version 7

 (just to make things confusing they went version 1.0, 1.1, 1.2, 1.3,

1.4, 5, 6 and 7 – i.e. they dropped the "1." bit after 1.4…!)

 The JRE gives you the JVM along with everything else you

need to run Java applications

 it does NOT include javac, the Java compiler

 The JDK includes the JRE along with everything additional

you need to develop Java applications…

 …such as (among other things) the compiler

 So, ordinarily, you would need

 An editor, to author your source code

 Examples might be Notepad, TextPad, TextWrangler on a Mac –

anything that can create a text file

 The Java compiler which produces byte code

 the javac program, included with the Java development kit (JDK)

 The Java application launcher

 the java program, included with both the Java runtime environment

(JRE) and also with the JDK

 A Java program begins as source
code.

 This is the human-readable code
that the programmer composes

 The java compiler, javac,
produces an object file which
contains Java bytecode.

 E.g. javac Hello.java

 The result will be a file called
Hello.class – our bytecode

 The bytecode can be run on the
JVM on any platform that has a
JVM available

 We might invoke the JVM to run
our bytecode with

 java Hello

File: HelloWorld.java

javac HelloWorld.java

-> results in HelloWorld.class

Java HelloWorld

-> runs HelloWorld.class

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!");

}

}

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!");

}

}

class name

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!");

}

}

class name

code block (class
declaration)

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!") ;

}

}

semi-colon denotes
end of statement

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!");

}

}

class name

inner code block
(method declaration)

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println("Hello, World!");

}

}

main method

File: HelloWorld.java

public class HelloWorld

{

public static void main (String[] args)

{

System.out.println ("Hello, World!");

}

}

a method that
displays text on the

screen

string (text) to display

System.out.println("Hello, World!");

NoobLab takes this as
read in the early exercises

and this

public class SomeJavaCode

{

public static void main (String[] args)

{

}

}

System.out.println("Hello, World!");

System.out.println("Good here isn't it?");

public class SomeJavaCode

{

public static void main (String[] args)

{

}

}

 For example:

System.out.println("Hello, World!")

Zystem.out.println("Hello, World!");

system.out.println("Hello, World!");

Error!

Punctuation is wrong –

Semi-colon is missing

Error!

spelling is not right

Error!

"spelling" is not right - should be an uppercase ‘S’

 The clue is in the name…

 … it means which type of information a particular piece of
data is

 Consider the following pieces of information:

 "Paul Neve"

 57

 57.347531

 11/7/80

 They are all different data types

 This means that types of

variables are strongly enforced

 You can't put a number in a string

variable

 You can't put a string in a numeric

variable

40

 So if variables are like
boxes, then the boxes in
Java are like this

 You can only put things
into them that "fit in the
box's hole"

41

 Unlike in pseudocode…

 set box = 2;

 ..or in Javascript

 var box = 2;

 …or in PHP

 $box = 2;

 …Java requires that when you declare a new variable, you

have to specify it's data type

int box = 2;

 Unlike in pseudocode…

 set box = 2;

 ..or in Javascript

 var box = 2;

 …Java requires that when you declare a new variable, you

have to specify it's data type

int box = 2 ;

data type

of new

variable

variable

name

starting value of

new variable

end of

statement that

declares the

new variable

 We can split up the declaration of a new variable and

assigning a value into two separate lines

 The first time we declare a variable, we must specify its

data type

int box;

System.out.println("Box has been declared");

box = 17;

System.out.println("Box now contains "+box);

 When we subsequently use it – either to assign a value, or to

access what's stored inside it, we do NOT specify the data

type, we just refer to it by name alone

 Integers are whole numbers, e.g. 1, 7, 27, -7 4394, -500,

475893 – anything between -2147483648 and 2147483647

inclusive

 In Java, we use the keyword int to indicate an integer:

int numberOfStudents;

numberOfStudents = 65;

or

int numberOfStudents = 65;

45

 Strictly speaking, strings aren't a data type in Java – but for

now, you can treat them like they are

 So to declare a string variable in Java:

String box1 = "Paul";

 Strictly speaking, strings aren't a data type in Java – but for

now, you can treat them like they are

 So to declare a string variable in Java:

S tring box1 = "Paul" ;

Note capital S!

Remember C-like

languages are CASE

SENSITIVE!

Remember that if

you want to put an

explicit value into

your string, you

must put it in

quotes!

1.

2.

3.

4.

5. All of them

1. 2. 3. 4. 5.

92%

1% 2%
5%

0%

String myBigBox;

myBigBox = "Paul";

String myBigBox;

mybigbox = "Paul";

String myBigBox;

MYBIGBOX = "Paul";

String myBigBox;

MyBigBox = "Paul";

String myBigBox;

myBigBox = "Paul";

String myBigBox;

mybigbox = "Paul";

String myBigBox;

MYBIGBOX = "Paul";

String myBigBox;

MyBigBox = "Paul";

1. The brackets should be
removed from the third line

2. The quotes should be
removed from the third line

3. The keyword String should
be added at the start of the
second line

4. There is some other error in
the code

5. There is no error in the
code, it would run fine, and
it would print Hello, World

1. 2. 3. 4. 5.

1%

88%

3%5%4%

String greeting;

greeting = "Hello, World";

System.out.println("greeting");

 Stores numbers with a decimal point or floating point

numbers, e.g. 10.5, 1.0, 100.999, -0.1

 Example usage:

double totalMarks = 56.7;

51

 doubles are frowned upon for use in "real
world" applications that deal with money

 you'll see an example WHY in the practical…

 An integer value will be automatically
converted if you try to assign it into a double
variable, e.g.
double width = 10; // results in 10.0

or even

int roughWidth = 20;

double width = roughWidth; // results in 20.0

52

 However, a double will not "fit" into an integer, e.g.

double width = 10.7;

int roughWidth = width;

53

will not work 

 I have taught you about the double data type

 Java has lots of other data types that can represent floating

point numbers

 The NoobLab exercises assume you've used what we teach on

this module!

 If you start using floats or other data types we've not

mentioned in workshop exercises

 You won't win the medals

 I will laugh at you for

a) not paying attention during lectures

b) not coming to lectures

c) mindlessly Googling for answers rather than studying (or at least

searching) the teaching material provided

d) all of the above

55

+ add

- Subtract

* multiply

/ divide

% remainder
operands

operator
int counter = 1000;

int number1 = counter + 10;

int number2 = number1 – 500;

int number3 = number2 * 2;

int number4 = number3 / 9;

int number5 = number4 % 5;

expression

assignment
operator

56

int myNumber = 10;

myNumber = myNumber + 5;

int myNumber = 10;

myNumber += 5;

int myNumber = 10;

myNumber = myNumber + 1;

int myNumber = 10;

myNumber++;

 Also for operators other than plus, e.g.
int myNumber = 10;

myNumber = myNumber--; // myNumber becomes 9

myNumber *= 2; // myNumber becomes 18

 You can mix data types when applying an operator to several

operands

 A rule of thumb is that the result will have the "simplest" data

type required to hold the result of the operation:

57

String text = "Some text";

String num = 27;

String merged = text+num;

// result is a string

// i.e. "Some text27"

int num = 27;

double merged = num * 0.5

// result is a double

// i.e. 13.5

int num = 27;

double merged = num * 2

// result is an int, i.e 54

// but an int "fits" into a

// double, so merged ends up

// as 54.0

String gender;

gender = "male";

System.out.println(gender);

gender = "male";

System.out.println(gender);

String gender = "male";

System.out.println(gender);

The moral of the story:

Whenever you see some

Java code that has a data

type followed by a

variable name (such as

the code that is

underlined in our

examples), the code is

declaring a new variable.

String gender = "male";

System.out.println(gender);

gender = "female";

System.out.println(gender);

String gender;

gender = "male";

System.out.println(gender);

gender = "female";

System.out.println(gender);

String gender = "male";

System.out.println(gender);

String gender = "female";

System.out.println(gender);

The moral of the story:

We've already seen that a

data type followed by a

variable name declares a

new variable.

You cannot declare

another new variable

with the same name – and

you cannot re-declare a

variable

1.

2.

3.

1. 2. 3.

28%

8%

64%

String language;

language = "Java";

String Java = "Javascript";

String name;

name = "Paul";

System.out.println(name);

String name = "Neve";

System.out.println(name);

String gender;

sex = "male";

System.out.println(gender);

1

2

3

String language;

language = "Java";

String Java = "Javascript";

String name;

name = "Paul";

System.out.println(name);

String name = "Neve";

System.out.println(name);

String gender;

sex = "male";

System.out.println(gender);

String language;

language = "Java";

String Java = "Javascript";

String name;

name = "Paul";

System.out.println(name);

String name = "Neve";

System.out.println(name);

name is declared

twice

String gender;

sex = "male";

System.out.println(gender);

String language;

language = "Java";

String Java = "Javascript";

String name;

name = "Paul";

System.out.println(name);

String name = "Neve";

System.out.println(name);

name is declared

twice

String gender;

sex = "male";

System.out.println(gender);

language and Java are

two different variables

String language;

language = "Java";

String Java = "Javascript";

String name;

name = "Paul";

System.out.println(name);

String name = "Neve";

System.out.println(name);

name is declared

twice

String gender;

sex = "male";

System.out.println(gender);

sex is never declared

(gender is, but that's a

different variable)

language and Java are

two different variables

 Variable names

 Must begin with a letter, the dollar sign $, or the underscore

character _

 May then contain letters, digits, dollar signs, or underscores

 May NOT contain any other characters – including spaces

 May not be the same as a Java keyword

 Google for "Java language keywords"

 Variable names should always start with a lower case (small)

letter

 name, language, numberOfBananas

 Name, Language, NUMBEROFBANANAS

 Variable names should describe what they store

 userName, programmingLanguage, meaningOfLife

 stringData, x, fredsVariable

 If the name you choose consists of only one word, spell that

word in all lowercase letters. If it consists of more than one

word, capitalise the first letter of each subsequent word

 speed, name, userName, meaningOfLifeTheUniverseAndEverything

 user_name, meaningoflifetheuniverseandeverything

String language;

language = "Java";

String Java = "Javascript";

String language;

language = "Java";

String Java = "Javascript";

1. In line 2, you need to add the
keyword String to declare the
variable

2. In line 3, it doesn't make
sense – Java is not Javascript

3. The code breaks the rules of
the Java language
somewhere, so it wouldn't run

4. The code breaks the
conventions of the Java
language somewhere. It'd run,
but experienced programmers
would laugh at you

1. 2. 3. 4.

0%

94%

3%4%

String language;

language = "Java";

String Java = "Javascript";

 We can use this to get input from the end-user during

execution of a program

Scanner userInput = new Scanner(System.in);

System.out.println("Please type your name.");

String name = userInput.nextLine();

System.out.println("Hello there, "+name);

1

2

3

4

 You can use the same Scanner as many times as necessary…

 …so our program could continue thus:

Scanner userInput = new Scanner(System.in);

System.out.println("Please type your name.");

String name = userInput.nextLine();

System.out.println("Hello there, "+name);

System.out.println("Please type your age.");

int age = userInput.nextInt();

System.out.println(name+"'s age is "+age);

 You can use the same Scanner as many times as necessary…

 …so our program could continue thus:

Scanner userInput = new Scanner(System.in);

System.out.println("Please type your name.");

String name = userInput.nextLine();

System.out.println("Hello there, "+name);

System.out.println("Please type your age.");

int age = userInput.nextInt();

System.out.println(name+"'s age is "+age);

IMPORTANT

QUESTION:

WHY DO YOU

THINK THESE ARE

DIFFERENT?

(or: "let's see who was paying attention during the

first part of the lecture!")

1. Java is a compiled

language

2. Java is an interpreted

language

3. Java is object oriented

4. Java is weakly typed

5. Java is a high-level

language
1. 2. 3. 4. 5.

1%
4%

1%

91%

4%

1. It is used to compile
Java source code to
Java byte code

2. It is used to run Java
byte code

3. It is used to create and
edit Java source code

4. It is used to clear (hence
the "C") the screen in
Java

5. Something else
1. 2. 3. 4. 5.

88%

6%
1%1%

5%

 Java is a programming language that is

 general purpose

 platform independent

 object oriented

 both compiled and interpreted

 Java source code is compiled to Java bytecode, which runs

on the Java Virtual Machine

 The JVM is a simulation of a CPU with an instruction set that

matches Java bytecode

 Your compiled programs run in this simulation – so any

platform that has a JVM available can run compiled Java

programs

 Java is a C-like language

 Code blocks are delimited with curly brackets { }

 The semi-colon indicates the end of a statement

 Programs are comprised of classes

 Every Java program must have a main method where the

program starts from

 Java is strongly typed

 Variables MUST have their data types specified when you declare

them

 You cannot put data into a variable if the data type doesn't "fit"

 e.g. you couldn't put the text Hello into an integer variable!

 Variables MUST be declared before you can use them

 A variable is declared by specifying its data type and its
name

 You can only declare a variable once

 There are variable naming conventions and there are
variable naming rules

 The rules cannot be broken – your programs will not compile!

 The conventions are practices that Java programmers have
agreed among themselves

 Your programs will compile if you break the conventions – but don't! 

 Use a Scanner to get input from the end user in your
programs

 Oh, and finally… the Sinclair Spectrum was the best
computer ever made 

