

 The program asks the user to enter a number

 If the user enters a number greater than zero, the program

displays a message: “You entered a number greater than

zero”

 Otherwise, the program does nothing

 The action of the program depends on the input

 We can create this program using an if statement

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

display "Enter a number"

get number

if number > 0

display "You entered a number greater than zero"

endif

System.out.println("Enter a whole number");

Scanner keyboard = new Scanner(System.in);

int number = keyboard.nextInt();

if (number > 0)

{

System.out.println("You entered a number greater than zero");

}

if number > 0

(stuff to do goes here)

endif

if (number > 0)

{

(stuff to do goes here)

}

stuff to do goes here

Blocks

Banana/Pseudocode Java

1. The program would not compile/run

2. The program would run but there would
be an error

3. There would be no output

4. It would display the message about the
number being greater than zero

1. 2. 3. 4.

7%

16%

51%

26%

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter a whole number");

String input1 = keyboard.nextLine();

int number = Integer.parseInt(input1);

if (number > 0);

{

System.out.println("You entered a number greater than zero");

System.out.println("Hooray!");

System.out.println("We like numbers greater than zero!");

}

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter a whole number");

String input1 = keyboard.nextLine();

int number = Integer.parseInt(input1);

if (number > 0);
{

System.out.println("You entered a number greater than zero");

System.out.println("Hooray!");

System.out.println("We like numbers greater than zero!");

}

 Can you see the problem yet?

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter a whole number");

String input1 = keyboard.nextLine();

int number = Integer.parseInt(input1);

if (number > 0);
{

System.out.println("You entered a number greater than zero");

System.out.println("Hooray!");

System.out.println("We like numbers greater than zero!");

}

Operator Meaning Example

> greater than if (number > 40)

< less than if (height < 1.5)

== equals if (counter == 0)

!= not equals if (records != 1)

>= greater than or equal to if (students >= 10)

<= less than or equal to if (result <= -5)

 Relational operators result in a boolean value

 A boolean value has two possible states – TRUE or FALSE

 If an integer variable value contains 7

value < 5 false

value > 5 true

value == 5 false

value != 5 true

value == 7 true

14

 An expression involving relational operators
will result in a single value, just as with
mathematical operators

 The single value that results from an expression
with relational operators can only be TRUE or
FALSE – i.e. a boolean

 So our IF statements, grammatically speaking,
expect something that will end up as a single
boolean value

15

1.

2.

3.

4.

5%
13%

82%

1%

int value = 7;

if (value + 5)

{

value = 0;

}

int value = 7;

if (value == 7)

{

value = 0;

}

int value = 7;

if (value > 5)

{

value = 0;

}

int value = 7;

if (value + 5 == 13)

{

value = 0;

}

1

2

3

4

17

if (an expression that results in true or false)

{

…do something

}

int value = 7;

if (value + 5)

{

value = 0;

}

int value = 7;

if (value == 7)

{

value = 0;

}

int value = 7;

if (value > 5)

{

value = 0;

}

int value = 7;

if (value + 5 == 13)

{

value = 0;

}

boolean status = true;

if (status == true)

{

System.out.println(“Status is true”);

}

18

boolean status = true;

if (status == true) <- Not needed – why?

{

System.out.println(“Status is true”);

}

19

Display “Enter first word”

Get str1

Display “Enter second word”

Get str2

If str1 == str2

Display “Your two words are the same”

EndIf

if (str1.equals(str2))

{

System.out.println("The two words are the same");

System.out.println("The word you entered was: " + str1);

}

 Strings are different (irritatingly…)

 Strings are compared with the .equals
method

 Comparison is case sensitive

 "flibble" is not the same as "FLIBBLE"

 Do NOT use str1 == str2 with strings

 …that might not work as expected

if (str1.equalsIgnoreCase(str2))

{

System.out.println("The two words are the same");

System.out.println("The word you entered was: " + str1);

}

 Can also are compare with the
.equalsIgnoreCase method

 In this case the comparison is NOT case
sensitive

 "flibble" IS the same as "FLIBBLE"

Display “Enter a number”

Get number

If number < 0

Display “You entered a number less than zero”

Else

Display “You entered a number that was zero or greater”

EndIf

if (boolean expression)

{

statements;

}

else

{

statements;

}

if the expression
evaluates to true,

execute these
statements

evaluate this
expression to
get a value of
true or false

if false, execute

these statements

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter a whole number");

int number = keyboard.nextInt();

if (number < 0)

{

System.out.println("You entered a number less than zero");

}

else

{

System.out.println("You entered a number zero or greater");

}

display “Enter a number”

get number

if number < 0

Display “You entered a number less than zero”

else

Display “You entered a number that was zero or greater”

endIf

if (number > 0)

{

System.out.println("It's greater than zero");

}

else if (number == 0)

{

System.out.println("It's equal to zero");

}

else

{

System.out.println("It's below zero");

}

if (number >= 0)

{

if (number % 2 == 0)

{

System.out.println("Even, above

zero");

}

else

{

System.out.println("Odd, above zero");

}

}

else

{

System.out.println("It’s below zero");

}

if (number >= 0)

{

if (number % 2 == 0)

{

System.out.println("Even, above

zero");

}

else

{

System.out.println("Odd, above zero");

}

}

else

{

System.out.println("It’s below zero");

}

if (number >= 0)

{

if (number % 2 == 0)

{

System.out.println("Even, above

zero");

}

else

{

System.out.println("Odd, above zero");

}

}

else

{

System.out.println("It’s below zero");

}

if (number >= 0)

{

if (number % 2 == 0)

{

System.out.println("Even, above

zero");

}

else

{

System.out.println("Odd, above zero");

}

}

else

{

System.out.println("It’s below zero");

}

Operator Name Description

|| OR If ANY of the conditions are true, this

operator will return TRUE. If ALL of the

conditions are false, it will return

FALSE

&& AND If ALL of the conditions are true, this

operator will return TRUE. If ANY of

the conditions are false, it will return

FALSE.

! NOT Reverses a condition – so if the original

condition was true, this will return

FALSE. If the original condition was

false, this will return TRUE

31

 Logical operators let you combine several conditions

Scanner keyboard = new Scanner(System.in);

System.out.println(“Enter your name”);

String name = keyboard.nextLine();

if (name.equals(“Paul”) || name.equals(“Fred”))

{

System.out.println(“I was looking for you, Paul or Fred”);

}

else

{

System.out.println(“I was looking for someone else”);

}

 Assume we type “Fred”…

Scanner keyboard = new Scanner(System.in);

System.out.println(“Enter your name”);

String name = keyboard.nextLine();

if (name.equals(“Paul”) || name.equals(“Fred”))

{ false || true

System.out.println(“I was looking for you”);

}

else

{

System.out.println(“I was looking for someone else”);

}

 Assume we type “Fred”…

Scanner keyboard = new Scanner(System.in);

System.out.println(“Enter your name”);

String name = keyboard.nextLine();

if (name.equals(“Paul”) || name.equals(“Fred”))

{ false || true

System.out.println(“I was looking for you”);

}

else

{

System.out.println(“I was looking for someone else”);

}

TRUE

for (int i = 0; i < 5; i++)

{

System.out.println("Java is awesome");

}

Declares and initialises the

counter variable – in this case,

the counter is i and it starts

at zero.

Specifies the condition under which

the loop continues to repeat – in this

case it keeps going while it’s less

than 5… i.e. it does it UNTIL it gets to

4…

36

for (int i = 0; i <= 4; i++)

{

System.out.println("Java is awesome");

}

equivalent to the pseudocode

FOR I = 0 TO 4

DISPLAY "Java is awesome"

ENDFOR

Declares and initialises the

counter variable – in this

case, the counter is i and

it starts at zero.

Specifies the condition

under which the loop

continues to repeat – in

this case it keeps going

UNTIL it gets to 5.

What happens to the

counter variable every

time we repeat the loop –

in this case, it is

increased by 1.

 Depending on where a variable gets declared, only certain parts of
a program will be able to see the variable

 As a rule of thumb, if a variable is declared within a code block, it
can only be seen from INSIDE that code block

 Variables declared inside a code black CANNOT be seen outside the
code block

 The below would NOT WORK:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

if (x > 10)

{

int y = 27;

}

System.out.println("Y is "+y);

 Depending on where a variable gets declared, only certain parts of
a program will be able to see the variable

 As a rule of thumb, if a variable is declared within a code block, it
can only be seen from INSIDE that code block

 Variables declared inside a code black CANNOT be seen outside the
code block

 The below would NOT WORK:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

if (x > 10)

{

int y = 27;

}

System.out.println("Y is "+y);

Breaks variable scope…

This statement cannot see

"inside" the code block

 This WOULD work though:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

if (x > 10)

{

int y = 27;

if (x > 20)

{

System.out.println("Y is "+y);

}

}

 This WOULD work though:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

if (x > 10)

{

int y = 27;

if (x > 20)

{

System.out.println("Y is "+y);

}

}

this…

 This WOULD work though:

Scanner keyboard = new Scanner(System.in);

int x = keyboard.nextInt();

if (x > 10)

{

int y = 27;

if (x > 20)

{

System.out.println("Y is "+y);

}

}

…is still inside this

1. Fix it? It's fine. Leave it
alone!

2. Remove the word int from
the first line

3. Change the first two lines to
read
int i;
for (i = 0; i < 10; i++)

4. Declare a new variable inside
the loop and assign the value
of i to it, then display that
new variable in the final line
of the program

5. Something else 1. 2. 3. 4. 5.

28%

0%
2%

13%

58%

for (int i = 0; i < 10; i++)

{

System.out.println("I is now "+i);

}

System.out.println("I finished up as "+i);

 So above, i is declared as part of the FOR statement…

 …therefore it is only visible in the code block of the FOR loop.

 In the final line i is out of scope

 We must declare the counter various outside of the loop if we wish

to use it outside of the loop:

43

for (int i = 0; i < 10; i++)

{

System.out.println("I is now "+i);

}

System.out.println("I finished up as "+i);

int i; // declare our variable first

for (i = 0; i < 10; i++)

{

System.out.println("I is now "+i);

}

System.out.println("I finished up as "+i);

 You don't have to use a literal value in your FOR loop

condition – you can use a variable or, indeed, any expression

 or even…

System.out.println("How awesome is Java?");

System.out.println("Give a number between 1 and 10");

Scanner keyboard = new Scanner(System.in);

int repetitions = keyboard.nextInt()

for (int i = 0; i < repetitions; i++)

{

System.out.println("Java is awesome x "+i);

}

System.out.println("How awesome is Java?");

System.out.println("Give a number between 1 and 10");

Scanner keyboard = new Scanner(System.in);

int repetitions = keyboard.nextInt()

for (int i = 0; i < repetitions*10; i++)

{

System.out.println("Java is awesome x "+i);

}

45

for (int i = 0; i < 10; i++)

{

String stars = "*";

for (int j = 0; j < i; j++)

{

stars = stars + " *";

}

System.out.println(stars);

}

46

int i = 0;

while (i < 5)

{

System.out.println("Java is awesome");

i++;

}

equivalent to the pseudocode

SET i = 0;

WHILE i < 5

DISPLAY "Java is awesome"

i = i + 1;

ENDWHILE

47

int i = 0;

while (i < 5)

{

System.out.println("Java is awesome");

i++;

}

equivalent to the pseudocode

SET i = 0;

WHILE i < 5

DISPLAY "Java is awesome"

i = i + 1;

ENDWHILE
While the condition

evaluates to true, these

statements will repeatedly

run.

The condition specifies the

scenario under which the

loop continues to repeat –

in this case it keeps going

WHILE the variable i is less

than 5.

48

int i = 0;

do

{

System.out.println("Java is awesome");

i++;

} while (i != 5); <- note the semicolon

equivalent to the pseudocode

SET i = 0;

REPEAT

DISPLAY "Java is awesome"

i = i + 1;

UNTIL i == 5

int i = 0;

do

{

System.out.println("Java is awesome");

i++;

} while (i != 5);

equivalent to the pseudocode

SET i = 0;

REPEAT

DISPLAY "Java is awesome"

i = i + 1;

UNTIL i == 5

While the condition evaluates to true, these

statements while repeatedly run.

IMPORTANT: note the fundamental difference

between the REPEAT/UNTIL construct you saw

in pseudocode and Java's DO/WHILE.

• REPEAT/UNTIL repeats until the final

condition is TRUE.

• So when it is true it stops!

• DO/WHILE in Java repeats while the

condition is true

• So when it is true it repeats!

The condition specifies the condition

under which the loop continues to

repeat – in this case it keeps going

WHILE the variable i is not equal to 5.

50

Scanner keyboard = new Scanner(System.in);

System.out.println("Do you want to be insulted?");

String choice = keyboard.nextLine();

while (choice.equals("yes"))

{

System.out.println("You are ugly");

System.out.println("Go again?");

String choice = keyboard.nextLine();

}

Scanner keyboard = new Scanner(System.in);

System.out.println("Do you want to be insulted?");

String choice = keyboard.nextLine();

do

{

System.out.println("You are ugly");

System.out.println("Go again?");

String choice = keyboard.nextLine();

} while (choice.equals("yes"));

What happens if you

say "no" right at the

start?

 for loop – when the number of repetitions can be

determined before the loop is entered

 while loop – if the number of repetitions cannot be

determined before the loop is entered

 do-while loop – same as a while loop, but the statements

are executed at least once

51

 A variable is like a box – although with certain rules and

restrictions

 Our boxes have labels on the side

 We can put one thing only into each box

In pseudocode, this would

be

set box1 = "Paul";

set box2 = 57;

set box3 = -2.7521

In Java, this would be

String box1 = "Paul";

int box2 = 57;

double box3 = -2.7521

 If you try to put a value into a variable that is already defined,

and already contains a value, the new value replaces the old

one

String name = "Prince";

System.out.println(name);

name = "The Artist Formerly Known As";

System.out.println(name);

Line 1 Line 3

 An array is a special type of variable in that it can contain

many values

 If a standard variable is like a box, think of an array as being

like a box with compartments:

 One of these "compartments" is more correctly referred to as

an element of the array

 Each element has a unique number (or index)

 In most programming languages element indexes start at 0

56

 To Create an Array in Java

 Use the new operator

// 3 ints

int[] arr;

arr = new int[3];

or

int[] arr = new int[3];

create array of 3 ints:

arr[0], arr[1], arr[2]

Can be combined

in one statement

 If a variable is like a box, then an array is like a box with

numbered compartments…

String[] box = new String[5];

57

 If a variable is like a box, then an array is like a box with

numbered compartments…

String[] box = new String[5];

58

specify what data

type the new array

will have

give it a

name (in

this case,

box)

allocate 5

compartments (elements)

 Place elements into a “compartment” of the array by

specifying the compartment number:

 box[3] = “xyz”;

 Until you assign something to an array element, it will

contain the default value for that data type

 Numeric primitives (e.g. int, double) will be zero

 Strings will be null

“xyz”

 We access an array by using its name, just like any other

variable

 However, usually we will want to be accessing not only the

array but a specific element of the array

 We specify the element we're dealing with by putting the

element number in square brackets after the array name

String[] box = new String[5];

box[1] = "foo";

box[4] = "bar";

System.out.println(box[1]);

System.out.println(box[4]);

System.out.println(box[3]);

String[] box = new String[5];

box[1] = "foo";

box[4] = "bar";

System.out.println(box[1]);

System.out.println(box[4]);

System.out.println(box[3]);

foo bar

foo

bar

?

 Until you assign something to an array element, it will

contain the default value for that data type

 Numeric primitives (e.g. int, double) will be zero

 Strings will be null

 Translation: if you leave an array element empty, then

depending on what kind of data type your array stores, you'll

get a starting value

 An array that stores numbers will have zero in all the elements

 An array that stores objects (such as Strings) will start out with

the elements being null

 Null is a special value which means nothing – like undefined in Banana

or Javascript

 Why bother?

 Why not just do

String box1 = "foo";

String box2 = "bar";

String box3 = "fubar";

 instead of

String box[] = new String[3]

box[0] = "foo";

box[1] = "bar";

box[2] = "fubar";

 ?

 What about if you wanted to print out all the values in an

array?

 If we didn't use an array and just used lots of individual

variables, we could only access each variable by explicit

name

 We would need one line of code to print each one

String box1 = "foo";

String box2 = "bar";

String box3 = "fubar";

System.out.println(box1);

System.out.println(box2);

System.out.println(box3);

 What if we had 10 of these? 100? 1000?!

 Contrast the following:

String[] box = new String[3];

box[0] = "foo";

box[1] = "bar";

box[2] = "fubar";

for (int count = 0; count < 3; count++)

{

System.out.println(box[count]);

}

 What would this do?

 Remember your grammar!

 What if we had 10 elements in the array? 100? 1000?

1. It would convert whatever word the user typed in
into the corresponding number (so if they typed
three they'd get 3)

2. It would convert whatever number the user typed
in into the corresponding word (so if they typed 3
they'd get three)

3. It would do something else

1. 2. 3.

5%

63%

32%

String[] words = new String[5]

words[0] = "one";

words[1] = "two";

words[2] = "three";

words[3] = "four";

System.out.println("Enter a number");

Scanner keys = new Scanner(System.in);

int num = keys.nextInt();

System.out.println("You typed "+words[num]);

 You can declare and populate an array in a single

line of code:

String[] words = { "zero", "one", "two", "three", "four" };

System.out.println("Enter a number");

Scanner keys = new Scanner(System.in);

int num = keys.nextInt();

System.out.println("The number in words is "+words[num]);

 Here's a good one

System.out.println("How many numbers do you want to
store?");

Scanner keys = new Scanner(System.in);

int max = keys.nextInt();

int[] numbers = new int[max];

for (int count = 0; count < max-1; count++)

{

System.out.println("Enter number "+count);

numbers[count] = keys.nextInt();

}

System.out.println("The numbers you entered were");

for (int count = 0; count < max-1; count++)

{

System.out.println(numbers[count]);

}

 We can access elements of arrays by number

 The grammar of programming means that anything that

results in a number is treated the same as a number…

 variables that contain numbers

 calculations

 We can write constructs that access arrays programmatically

 A for loop that iterates through all the elements of an array

 An array that's declared based on the value of a variable

 A program that asks the user which element they want to view

 …the sky's the limit!

 You CANNOT do this with conventional variables

 We might use two arrays to store associated information

Scanner keys = new Scanner(System.in);

String[] friends = new String[5];

String[] colours = new String[5];

for (int count = 0; count < 5; count++) {

System.out.println("Enter a friend's name“);

friends[count] = keys.nextLine();

System.out.println("Enter their favourite colour“);

colours[count] = keys.nextLine();

}

friends

colours

Fred Carol Nigel Kevin Bill

blue green pink cyan yellow

[0] [3] [4][2][1]

[0] [3] [4][2][1]

 Most languages define arrays to be of specific and fixed

length

 declare myArray[6]

 myArray[12] = "ooops"

 would not work – the element 12 would be beyond the end of the

array which is only six elements long

 Q: What number would the last element be?

 You would most likely get an error message along the lines "array

element index out of range"

 Plus, you can't make an array bigger once it's declared

 If you know the values that the array needs to store at the

outset you can use the short array notation

String[] friends = { "Fred","Carol","Nigel","Kevin","Bill" };

 You can also use variables (the values don't have to be

constants), for example

String[] friends = { bestFriend, enemy, stranger, x, banana };

 (assuming of course that bestFriend, enemy, stranger, x

and banana were variables of type String)

friends
Fred Carol Nigel Kevin Bill

[0] [3] [4][2][1]

 Write a program that asks me to enter the current balance

on my credit card. Each month I pay back £100, but I am

then charged 10% interest on the remaining balance.

 The program should tell me:

 How long does it take to clear my credit card balance?

 How much did I pay in total?

75

 Let's say we a balance of £500 to start with.

 Month one:

 Starting Balance is £500

 We pay back £100

 Remaining balance is £400

 But we are charged 10% interest

 10% of £400 is £40

 So remaining balance after month one is £440

 Month two

 Starting balance is £440

 We pay back £100

 Remaining balance is £340

 But we are charged 10% interest

 10% of £340 is £34

 So remaining balance after month two is £374

 Month three

 Starting balance is £374

 We pay back £100

 Remaining balance is £274

 But we are charged 10% interest

 10% of £274 is £27.40p

 Remaining balance is £301.40p

 Month four

 Starting balance is £301.40

 We pay back £100

 Remaining balance is £201.40

 But we are charged 10% interest

 10% of £201.40p is £20.14p

 Remaining balance is £221.54p

 Month five

 Starting balance is £221.54

 We pay back £100

 Remaining balance is £121.54

 But we are charged 10% interest

 10% of £121.54 is £12.15

 Remaining balance is £133.69

 Month six

 Starting balance is £133.69

 We pay back £100

 Remaining balance is £33.69

 But we are charged 10% interest

 10% of £33.69 is £3.37

 Remaining balance is £37.06

 Month seven

 Starting balance is £37.06

 We DON'T pay £100

 We pay off the remaining balance of £37.06!

 We celebrate our lack of debt!

 What process did we follow to figure that out?

 We calculated how much the balance would be with £100 taken off

 We calculated what the interest would be on that remaining balance

 We added the interest to the remaining balance

 We repeated this until the balance remaining was less than £100

 How would we know how many months it took to pay the loan off?

 How might we calculate the total amount paid?

83

set months = 1

set balance = 500

set totalpaid = 0;

while balance > 100

balance = balance - 100;

set interest = balance * 0.019

balance = balance + interest

totalpaid = totalpaid + 100

months = months + 1

endwhile

totalpaid = totalpaid+balance

display ”You paid ”+totalpaid

display ”It took you ”+months+” months”

 What we did here was to determine the algorithm for this

problem by working through it step by step

 An algorithm is a step by step procedure for performing a

calculation or solving a problem

 Our pseudocode solutions can all be said to be algorithms in

their own right – they are themselves step by step

procedures

 Computer programs are simply implementations of

algorithms stated in a programming language such as Java

 The design processes we've been encouraging you to use are

simply aids to helping you formulate an algorithm

 Sometimes (as in this case) you know instinctively what the

algorithm is – but it can also help to work through the

problem by hand and observe how you're solving it

 That's a job for you during your practical session…!

 The basic programming constructs for Java (i.e. if, for,

while, do/while) follow C-like syntax

 A code block in C-like syntax uses curly brackets { and } to mark

the beginning and the end of the block

 In most cases, there is a one-to-one equivalent to the

Banana code (or pseudocode) you'll have previously learned

 The exception is do/while versus repeat/until

 do/while continues WHILE the condition is true

 repeat/until continued UNTIL the condition is true

 You will therefore need to invert your condition when porting a pseudocode
repeat/until to a Java do/while.

 If a variable is like a box, an array is a box with

compartments

 Each compartment (or element) has a number

 The first element is number 0

 Just as with any other variable, an array must be declared

the first time it is used, e.g.

String[] names = new String[5];

 Just as with any other variable in Java, when you declare an

array you need to specify the data type

 Put [] after the data type to indicate it's an array

 Use the keyword new immediately after the equals to indicate

it's a new object

 Then specify the data type and the length of the array

 Access a specific array element by giving the array variable

name and the element number in brackets:

 name[3] = "Paul";

 …would place the string Paul into the 4th array element (remember the

first one is number zero!)

 System.out.println(name[2]);

 …would print the value of the 3rd array element

 Remember your grammar and that programming is like lego!

 You can use a (numeric) variable instead of an integer literal to

refer to an array element

 System.out.println(name[num]);

 In this case

 name is an array

 num is an integer variable

 You can therefore use user input or other variables to access a

specific element of an array

 It also means you can use constructs like for loops to iterate

through the values in an array

 The basic programming constructs for Java (i.e. if, for,

while, do/while) follow C-like syntax

 A code block in C-like syntax uses curly brackets { and } to mark

the beginning and the end of the block

 In most cases, there is a one-to-one equivalent to the

Banana code (or pseudocode) you'll have previously learned

 The exception is do/while versus repeat/until

 do/while continues WHILE the condition is true

 repeat/until continued UNTIL the condition is true

 You will therefore need to invert your condition when porting a pseudocode
repeat/until to a Java do/while.

