

 Up until now we've been approaching programming from a

procedural perspective

 Our programs have been a set of steps – a procedure – which

solves a given problem or task

 If a person (or a computer) starts at the beginning, and follow

the procedure step by step they'll end up with the result or

answer to the problem

 Java is a general purpose language

 Java is platform independent

 Java is an object-oriented language

 There are different ‘editions’ of Java – we are using Java SE

 Those of you in the "A" occurrence of the module will get to

use Java EE next teaching block…

 A software design method based around writing programs

that model real world* objects

 Real world objects have

 behaviour (what it does)

 state (its characteristics, what it has)

 identity (what makes it different from others)

 Real world objects interact with other objects

 In an object oriented program, the interactions between objects

form the "glue" of the program…

* although often the object might be an abstract thing…

 A ball has

 diameter

 colour

5

6.35 inches

 A ball can

 bounce

 roll

6

 There are different types of balls

 They are different because of their attributes - e.g. their

colour and diameter

 They might bounce and roll differently (maybe as a result of

their different diameter)

7

 Think of a class as being like the blueprint for an object

 If we have a class called Ball, it will contain the code that

describes the characteristics of each and every ball

 The attributes of a class describe how individual objects of

that class differ from each other

 Consider a class called Ball, with attributes diameter and

colour...

 a cricket ball has a different diameter and colour to a tennis ball

 A tennis ball is an instance of the class ball, so is a cricket ball, but

they are DIFFERENT instances of the same class

 The methods of a class describe what individual objects of

that class can do – the actions they can take

 these methods might different from instance to instance based

on their attributes

 Everything in Java is defined as a class

 Again: think of a class as being like the blueprint for an object. It

does not detail a specific single one of the thing you're describing

– only a general definition

 Once we have this blueprint, we can use it to create instances of

our classes – or objects

 Up until now NoobLab has been hiding the class declaration

and the main method from you

 This has meant you can use Java in a procedural way – but

Java is NOT a procedural language…

9

System.out.println("Hello, World!");

NoobLab takes this as
read in the early exercises

and this

public class SomeJavaCode

{

public static void main (String[] args)

{

}

}

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

Methods

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

Attributes

 Some things to note

 Class names should be capitalised

(remember the conventions of

Java!)

 Curly brackets specify the

boundaries of the class declaration

 Method names are NOT

capitalised, and always

immediately followed by brackets

 there may be parameters between the

brackets (but not in this example)

 More curly brackets indicate the

start and end of each method

 Make sure your curly brackets are

matched!

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

16

 On its own, our Ball class does

nothing

 Think of a class as a general

"description" of objects of that type

 Our class is a description of ALL

balls, not any specific individual ball

 We have to create instances of our

class or objects (these terms are

interchangeable)

 When we do, the class is used as the

"blueprint" for these new objects

 Instances of a class (objects) are

unique and individual entities

 There will be one single class definition

 There may be any objects of that class

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 Class names, same as variable names…

 Must begin with a letter, the dollar sign $, or the underscore

character _

 May then contain letters, digits, dollar signs, or underscores

 May NOT contain any other characters – including spaces

 May not be the same as a Java keyword

 Class names should always start with an upper case

(large) letter

 Person, Fruit, UniversityStudent

 car, house, whatIsAClassAnyway

 Class names should try to describe the actual real

world thing they represent, or describe their purpose

 Exam, Customer, OfficeBuilding

 MyClass, X, Xabc1235foobar

 If the name you choose consists of only one word, start

with a capital letter, then revert to lowercase letters.

If it consists of more than one word, capitalise the first

letter of each subsequent word

 Complex Java applications will consist of many

classes

 Consider a University registration system

 Classes in the system might include

o Student

o Course

o Module

o Tutor

 Which class should the application start from

when it is run? How do we know?

o Exam

o Classroom

o Coursework

o Qualification

 A main method is a special method that provides a starting

point for an application

 The code in the main method can create instances of our

classes (objects), which in turn might create other objects

(and again, and again, and again…)

 The relationships between classes in OO programming is

crucial, and is where its power lies

21

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

23

Main Method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

24

Variable declaration

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

25

Object creation

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

26

Assigning a new (blank)
object to a variable

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

27

Setting an attribute

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

< 6.5 >

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

28

 A "main" class
public class Mainv

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

29

Accessing an attribute

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

what's your

colour?

30

Calling a method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 Often, we'll want our methods to do different

things depending on a specific object's state

 Different sized balls bounce at different heights

 If a ball rolls by quickly, the blur you see will be a

different colour depending on the ball's colour

 So, we need to be able to read the attributes within our

methods31

 roll

 rolling will now print the

message

 colour blur!

 …where colour is the value of

the appropriate attribute

32

 bounce

 bouncing will now print the

message

 we bounced Xcm high

 …where X is the diameter

times two

(you get to do this one as one

of the workshop exercises)

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour+" blur!");

}

}

33

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

34

Accessing an attribute from
within a method in our class

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

35

..from Ball:

public void roll()

{

System.out.println(this.colour+" blur!");

}

Calling a method

What will this.colour

be in this case?

 Just because these examples have mostly had methods that
contain one line with a System.out.println, doesn't

mean that's ALL methods can contain!

 Your methods can – and WILL – contain if statements, for

and while loops, variables, calculations, and everything

you've seen so far

36

38

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

if (this.diameter < 50)

{

System.out.println("Boing");

}

else

{

System.out.println("HUUUUUGE BOING!");

}

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

 When we define a new class, one way of thinking of it is that

we've defined a new data type*

 We can use these "data types" – i.e. our classes – as

attributes in other classes

 This is the way we represent two classes with a "has a"

relationship

* this isn’t strictly speaking accurate, but can be a helpful simplification

 Consider classes to represent an employee and a contract

 Both classes have their own attributes, e.g.

 Employee

 name

 homeAddress

 hoursWorked

 We can say that employee HAS A contract

 So employee has an attribute of type contract

40

 Contract

 hourlyRate

 annualLeave

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

41

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

42

An attribute of type Contract,
called contract

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

43

a "Contract"

shaped hole

(our label on our box)

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

44

accessing the attribute
within the attribute

 The Unified Modeling Language

 A visual language for describing aspects of object oriented

software…

 …think diagrammatic pseudocode or flowcharts for OO

 In a way, it's like the old blocks of Thinking Like A Programmer –

except for OO

 One of the techniques in UML is the class diagram

 Class diagrams let us specify our classes and, most

importantly, the relationships between them

45

46

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

Ball

+diameter : double

+colour : String

+bounce()

+roll()

Employee

+name : String

+homeAddress : String

+hoursWorked : int

+contract : Contract

+printEarnings()

public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

Contract

+hourlyRate : double

+annualLeave: int

public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

Employee

+name : String

+homeAddress : String

+hoursWorked : int

+printEarnings()

public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

Contract

+hourlyRate : double

+annualLeave: int

public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

+contract

1

 Object oriented (and, ultimately, Java) programming is

really about writing collections of classes

 A class is a blueprint for an object (or an instance of the class)

 An object is a specific, individual, unique item of that class type

 e.g. Ball is the class, cricket ball or tennis ball is an object of type ball

51

 Classes have attributes that store state and identity, and

methods that describe things that objects of that class can

do

 A ball has a diameter (attribute)

 Balls can bounce (method)

 Methods can behave differently for each object of that

class, by using the values in their parameters

52

 Classes can have relationships with each other

 A "has a" relation

 is when a class has an attribute that is of another class's type

 e.g. Employee HAS A Contract

 Use UML class diagrams to visually depict your classes and

their relationships

53

