

 Up until now we've been approaching programming from a

procedural perspective

 Our programs have been a set of steps – a procedure – which

solves a given problem or task

 If a person (or a computer) starts at the beginning, and follow

the procedure step by step they'll end up with the result or

answer to the problem

 Java is a general purpose language

 Java is platform independent

 Java is an object-oriented language

 There are different ‘editions’ of Java – we are using Java SE

 Those of you in the "A" occurrence of the module will get to

use Java EE next teaching block…

 A software design method based around writing programs

that model real world* objects

 Real world objects have

 behaviour (what it does)

 state (its characteristics, what it has)

 identity (what makes it different from others)

 Real world objects interact with other objects

 In an object oriented program, the interactions between objects

form the "glue" of the program…

* although often the object might be an abstract thing…

 A ball has

 diameter

 colour

5

6.35 inches

 A ball can

 bounce

 roll

6

 There are different types of balls

 They are different because of their attributes - e.g. their

colour and diameter

 They might bounce and roll differently (maybe as a result of

their different diameter)

7

 Think of a class as being like the blueprint for an object

 If we have a class called Ball, it will contain the code that

describes the characteristics of each and every ball

 The attributes of a class describe how individual objects of

that class differ from each other

 Consider a class called Ball, with attributes diameter and

colour...

 a cricket ball has a different diameter and colour to a tennis ball

 A tennis ball is an instance of the class ball, so is a cricket ball, but

they are DIFFERENT instances of the same class

 The methods of a class describe what individual objects of

that class can do – the actions they can take

 these methods might different from instance to instance based

on their attributes

 Everything in Java is defined as a class

 Again: think of a class as being like the blueprint for an object. It

does not detail a specific single one of the thing you're describing

– only a general definition

 Once we have this blueprint, we can use it to create instances of

our classes – or objects

 Up until now NoobLab has been hiding the class declaration

and the main method from you

 This has meant you can use Java in a procedural way – but

Java is NOT a procedural language…

9

System.out.println("Hello, World!");

NoobLab takes this as
read in the early exercises

and this

public class SomeJavaCode

{

public static void main (String[] args)

{

}

}

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

Methods

 A Java class to define a ball might look like this
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

Attributes

 Some things to note

 Class names should be capitalised

(remember the conventions of

Java!)

 Curly brackets specify the

boundaries of the class declaration

 Method names are NOT

capitalised, and always

immediately followed by brackets

 there may be parameters between the

brackets (but not in this example)

 More curly brackets indicate the

start and end of each method

 Make sure your curly brackets are

matched!

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

16

 On its own, our Ball class does

nothing

 Think of a class as a general

"description" of objects of that type

 Our class is a description of ALL

balls, not any specific individual ball

 We have to create instances of our

class or objects (these terms are

interchangeable)

 When we do, the class is used as the

"blueprint" for these new objects

 Instances of a class (objects) are

unique and individual entities

 There will be one single class definition

 There may be any objects of that class

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 Class names, same as variable names…

 Must begin with a letter, the dollar sign $, or the underscore

character _

 May then contain letters, digits, dollar signs, or underscores

 May NOT contain any other characters – including spaces

 May not be the same as a Java keyword

 Class names should always start with an upper case

(large) letter

 Person, Fruit, UniversityStudent

 car, house, whatIsAClassAnyway

 Class names should try to describe the actual real

world thing they represent, or describe their purpose

 Exam, Customer, OfficeBuilding

 MyClass, X, Xabc1235foobar

 If the name you choose consists of only one word, start

with a capital letter, then revert to lowercase letters.

If it consists of more than one word, capitalise the first

letter of each subsequent word

 Complex Java applications will consist of many

classes

 Consider a University registration system

 Classes in the system might include

o Student

o Course

o Module

o Tutor

 Which class should the application start from

when it is run? How do we know?

o Exam

o Classroom

o Coursework

o Qualification

 A main method is a special method that provides a starting

point for an application

 The code in the main method can create instances of our

classes (objects), which in turn might create other objects

(and again, and again, and again…)

 The relationships between classes in OO programming is

crucial, and is where its power lies

21

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

23

Main Method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

24

Variable declaration

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

25

Object creation

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

26

Assigning a new (blank)
object to a variable

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

27

Setting an attribute

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

< 6.5 >

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

28

 A "main" class
public class Mainv

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

29

Accessing an attribute

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

what's your

colour?

30

Calling a method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 Often, we'll want our methods to do different

things depending on a specific object's state

 Different sized balls bounce at different heights

 If a ball rolls by quickly, the blur you see will be a

different colour depending on the ball's colour

 So, we need to be able to read the attributes within our

methods31

 roll

 rolling will now print the

message

 colour blur!

 …where colour is the value of

the appropriate attribute

32

 bounce

 bouncing will now print the

message

 we bounced Xcm high

 …where X is the diameter

times two

(you get to do this one as one

of the workshop exercises )

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour+" blur!");

}

}

33

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

34

Accessing an attribute from
within a method in our class

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

35

..from Ball:

public void roll()

{

System.out.println(this.colour+" blur!");

}

Calling a method

What will this.colour

be in this case?

 Just because these examples have mostly had methods that
contain one line with a System.out.println, doesn't

mean that's ALL methods can contain!

 Your methods can – and WILL – contain if statements, for

and while loops, variables, calculations, and everything

you've seen so far

36

38

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

if (this.diameter < 50)

{

System.out.println("Boing");

}

else

{

System.out.println("HUUUUUGE BOING!");

}

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

 When we define a new class, one way of thinking of it is that

we've defined a new data type*

 We can use these "data types" – i.e. our classes – as

attributes in other classes

 This is the way we represent two classes with a "has a"

relationship

* this isn’t strictly speaking accurate, but can be a helpful simplification

 Consider classes to represent an employee and a contract

 Both classes have their own attributes, e.g.

 Employee

 name

 homeAddress

 hoursWorked

 We can say that employee HAS A contract

 So employee has an attribute of type contract

40

 Contract

 hourlyRate

 annualLeave

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

41

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

42

An attribute of type Contract,
called contract

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

43

a "Contract"

shaped hole

(our label on our box)

 The employee class
public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

 The contract class
public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

44

accessing the attribute
within the attribute

 The Unified Modeling Language

 A visual language for describing aspects of object oriented

software…

 …think diagrammatic pseudocode or flowcharts for OO

 In a way, it's like the old blocks of Thinking Like A Programmer –

except for OO

 One of the techniques in UML is the class diagram

 Class diagrams let us specify our classes and, most

importantly, the relationships between them

45

46

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println(this.colour +" blur!");

}

}

Ball

+diameter : double

+colour : String

+bounce()

+roll()

Employee

+name : String

+homeAddress : String

+hoursWorked : int

+contract : Contract

+printEarnings()

public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

Contract

+hourlyRate : double

+annualLeave: int

public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

Employee

+name : String

+homeAddress : String

+hoursWorked : int

+printEarnings()

public class Employee

{

public String name;

public String homeAddress;

public int hoursWorked;

public Contract contract;

// an example method...

public void printEarnings()

{

System.out.println("Earnings this week are:");

System.out.println(this.hoursWorked * this.contract.hourlyRate);

}

}

Contract

+hourlyRate : double

+annualLeave: int

public class Contract

{

public double hourlyRate;

public int annualLeave;

// any methods would go here…

}

+contract

1

 Object oriented (and, ultimately, Java) programming is

really about writing collections of classes

 A class is a blueprint for an object (or an instance of the class)

 An object is a specific, individual, unique item of that class type

 e.g. Ball is the class, cricket ball or tennis ball is an object of type ball

51

 Classes have attributes that store state and identity, and

methods that describe things that objects of that class can

do

 A ball has a diameter (attribute)

 Balls can bounce (method)

 Methods can behave differently for each object of that

class, by using the values in their parameters

52

 Classes can have relationships with each other

 A "has a" relation

 is when a class has an attribute that is of another class's type

 e.g. Employee HAS A Contract

 Use UML class diagrams to visually depict your classes and

their relationships

53

