

 In our classes, we've had

 Attributes that have a visibility of public to store state and

identity for objects

 Methods for behaviour

 so far these have simply printed things to the console (possibly after

doing some calculations)

2

 Consider a version of Ball class
 This version has a bounce method that determines that the

height of the bounce is diameter times two:

 result would be to print 13 to the console

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.bounce();

}

}

public class Ball

{

public double diameter;

public void bounce()

{

double height = this.diameter * 2;

System.out.println(height);

}

}

 What about if we wanted to use that result in some way?

 What about if we wanted to calculate whether the bounced

height was high enough to go over another object

 …perhaps a goal in football, or a net in tennis?

4

5

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.bounce();

if (the tennisBall bounces heigher

than a net..)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public void bounce()

{

double height = this.diameter * 2;

System.out.println(height);

}

}

6

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.bounce();

if (the tennisBall bounces heigher

than a net..)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public void bounce()

{

double height = this.diameter * 2;

System.out.println(height);

}

}

How do we get this…

…so we can use it here?

 A return value lets us

send a result back

from a method to

whatever originally

called it

 THIS IS DIFFERENT

FROM JUST PRINTING

THE RESULT FROM

WITHIN THE METHOD!

 Printing a result
(System.out.println)

 is like telling someone the
answer verbally

 once the air has stopped
vibrating, the answer is
gone

 Returning a result as a
return value

 is like writing down the
answer and handing
someone the piece of
paper

 The person receiving the
piece of paper might read
it out loud ("print" it!), or
they might write down on
another piece of paper
(put it into a variable) or
they might do something
else with it

8

 Consider if I asked you "what's two plus two"?

9

public class Ball

{

public double diameter;

public void bounce()

{

double height = this.diameter * 2;

System.out.println(height);

}

}

10

public class Ball

{

public double diameter;

double

public void bounce()

{

double height = this.diameter * 2;

System.out.println(height);

return height;

}

}

11

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

12

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height ;

}

}

The return type is specified
before the method name

The return statement is
when you "transmit" the

result of your method back
to the calling statement

The return value is what gets
"transmitted" back to the calling statement

13

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

double bounced = tennisBall.bounce();

if (bounced > 36)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

14

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

double bounced = tennisBall.bounce();

if (bounced > 36)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

Call our method

15

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

double bounced = tennisBall.bounce();

if (bounced > 36)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height ;

}

}

Call our methodAssign whatever gets returned to
a newly declared variable, bounced

16

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

double bounced = tennisBall.bounce();

if (bounced > 36)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

We can make use of
bounced in the usual ways

17

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

if (tennisBall.bounce() > 36)

{

System.out.println("15-love!");

}

else

{

System.out.println("love-15!");

}

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

 A call to a method will evaluate to whatever its return

value is…

 …so the method call will "fit" in your code anywhere

where its returned data type would

 This is grammatically

no different than doing
if (13.0 > 36)

 "Transmission" need not

only be one way (i.e. from

method to caller)

 You can pass parameters

to your methods as well as

get a value returned from

them

 THIS IS VERY DIFFERENT

FROM GETTING INPUT

FROM THE KEYBOARD!

18

 Consider the earlier example when I asked someone to add

two plus two

 I "called a method"… i.e. "add some numbers"

 …but I also passed two parameters to the "method"

 what were they?

19

 Implementing a Calculator

class

 …one of the methods such a
class might have is add

 …so if we were to write add

for 2 + 2 we might do the

opposite:

 But what about scenarios

other than 2 + 2?

public class Calculator

{

public double add()

{

double num1 = 2;

double num2 = 2;

return num1+num2;

}

}

20

 We can specify parameters within the brackets that follow

the method name (which become part of the method

signature)

21

public class Calculator

{

public double add(double num1, double num2)

{

return num1+num2;

}

}

 We can specify parameters within the brackets that follow

the method name (which become part of the method

signature)

22

public class Calculator

{

public double add(double num1 , double num2)

{

return num1+num2;

}

}

Parameters

23

public class Main

{

public static void main(String[] args)

{

Calculator casio = new Calculator();

double result1 = casio.add(2,2);

double result2 = casio.add(6, result1);

System.out.println("The first result is "+result1);

System.out.println("The second result is "+result2);

}

}

public class Calculator

{

public double add(double num1, double num2)

{

return num1+num2;

}

}

24

public class Main

{

public static void main(String[] args)

{

Calculator casio = new Calculator();

double result1 = casio.add(2 , 2);

double result2 = casio.add(6, result1);

System.out.println("The first result is "+result1);

System.out.println("The second result is "+result2);

}

}

public class Calculator

{

public double add(double num1 , double num2)

{

return num1+num2;

}

}

?

 Each and every parameter MUST have a data type, even if

they're all the same type

 public double add(double num1, double num2)

 and NOT

 public double add(double num1, num2)

 You can think of parameters being like variables that exist

for the duration of the method, but that can have values

assigned to them from the calling code

25

1. 2

2. 3

3. 4

4. 5

5. 9

6. 10

7. 13
8. There would

be an error
1. 2. 3. 4. 5. 6. 7. 8.

13% 13% 13% 13%13%13%13%13%

public class Wibble

{

public int wobble;

public int flibble;

public void niblick(int foo)

{

this.wobble = foo*2;

}

public void bibble(int bar)

{

this.flibble = bar * 3;

}

public int flange()

{

return wobble + flibble;

}

}

public class Klunge

{

public static void main

(String[] args)

{

Wibble x = new Wibble();

x.niblick(2);

x.bibble(3);

int bar = x.flange();

System.out.println(bar);

}

}

1. 30

2. 32

3. 2

4. 0

5. It wouldn't print

anything!

6. It wouldn't even run;

there'd be an error

1. 2. 3. 4. 5. 6.

1%

8%

23%

68%

0%0%

public class Wibble

{

public void add(int x, int y)

{

return (x+1+y+1);

}

}

public class Klunge

{

public static void main

(String[] args)

{

Wibble x = new Wibble();

int y = x.add(10,20);

}

}

1. Remove the word void in line 3 of
Wibble

2. Add the word int before void in line
3 of Wibble

3. Replace the word void with the word
int in line 3 of Wibble

4. Remove the word void in line 3 of
Klunge

5. Add the word int before void in line
3 of Klunge

6. Replace the word void with the word
int in line 3 of Klunge

7. Add a line towards the end of
Klunge to print out the value of y

8. Something else

1. 2. 3. 4. 5. 6. 7. 8.

2% 1%

82%

5%
2%

6%
3%

0%

public class Wibble

{

public void add(int x, int y)

{

return (x+1+y+1);

}

}

public class Klunge

{

public static void main

(String[] args)

{

Wibble x = new Wibble();

int y = x.add(10,20);

}

}

 A constructor is a special kind of method

 It has no return type

 It is called when you create a new instance of a class

 ALL Java classes have a constructor, even if you don't

declare one…

 …but you can declare constructors of your own to replace

the default one

29

 When we create a new instance of a class, for example

Ball tennisBall = new Ball();

 we are in fact calling the constructor of the class

30

31

public class Ball

{

public double diameter;

public Ball()

{

System.out.println("We have a new ball");

}

// getters, setters, bounce and

// roll would follow here…

}

public class Main

{

public static void main(String[] args)

{

Ball snookerBall = new Ball();

snookerBall.setDiameter(5.25);

System.out.println(snookerBall.bounce());

}

}

What would the main
method print?

32

We have a new ball

10.5

(assuming we have a bounce
method that returns double
the diameter...)

public class Ball

{

public double diameter;

public Ball()

{

System.out.println("We have a new ball");

}

// getters, setters, bounce and

// roll would follow here…

}

public class Main

{

public static void main(String[] args)

{

Ball snookerBall = new Ball();

snookerBall.setDiameter(5.25);

System.out.println(snookerBall.bounce());

}

}

33

public class Ball

{

public double diameter;

public Ball()

{

System.out.println("We have a new ball");

}

// getters, setters, bounce and

// roll would follow here…

}

public class Main

{

public static void main(String[] args)

{

Ball snookerBall = new Ball();

snookerBall.setDiameter(5.25);

System.out.println(snookerBall.bounce());

}

}

Creating a new Ball calls the
constructor

 We might use a constructor

to set default values for a

new object

 Say we wanted each new

ball to default to

 Colour: white

 Diameter: 5

public class Ball

{

public double diameter;

public String colour;

public Ball()

{

this.diameter = 5;

}

// getters, setters, bounce and

// roll would follow here…

...

}

34

public class Ball

{

public double diameter;

public String colour;

public Ball()

{

this.diameter = 5;

this.colour = "white";

}

public double getDiameter()

{

return this.diameter;

}

// other getters, setters, bounce and

// roll would follow here…

35

public class main

{

public static void main (String[] a)

{

Ball newBall = new Ball();

double d = newBall.getDiameter();

}

}

What will go into d?

public class Ball

{

public double diameter;

public String colour;

public Ball()

{

this.diameter = 5;

this.colour = "white";

}

public double getDiameter()

{

return this.diameter;

}

// other getters, setters, bounce and

// roll would follow here…
36

public class main

{

public static void main (String[] a)

{

Ball newBall = new Ball();

double d = newBall.getDiameter();

}

}

What will go into d?

means the constructor method
is run…

diameter is set to 5

what will getDiameter give us?

 A constructor is a (special kind of) method

 Methods can be written with parameters

 Therefore constructors may have parameters

 We can use such constructors to create both a new object,

and set its attributes in a single go

37

public class Ball

{

public double diameter;

public String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

...

...NB: not complete!!!!

….rest of class would follow,

e.g. bounce etc
38

public class main

{

public static void main (String[] a)

{

Ball newBall = new Ball(10,"blue");

double d = newBall.getDiameter();

}

}

public class Ball

{

public double diameter;

public String colour;

public Ball(double d , String c)

{

this.diameter = d;

this.colour = c;

}

...

...NB: this class is abridged (i.e.

not complete for space reasons…!)

….rest of class would follow,

e.g. getters, setters, bounce etc
39

public class main

{

public static void main (String[] a)

{

Ball newBall = new Ball(10,"blue");

double diam = newBall.getDiameter();

String colour = newBall.getColour();

}

}

What would be in diam?

Would would be in colour?

 The moment you supply your own constructor, the default

one no longer exists!

 If you have a constructor with the signature

 public Ball(double d , double c)

 you will no longer be able to create a new Ball using

 Ball b = new Ball();

40

 You CAN have more than one method declaration with the

same name in the same class

 This includes constructors (which are just a special type of

method)

 This will work as long as the method signatures are

different

41

42

public class Ball

{

public double diameter;

public String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

public Ball(double d)

{

this.diameter = d;

// default value for colour

this.colour = "white";

}

public Ball(String c)

{

this.colour = c;

// default value for diameter

this.diameter = 5;

} ...

The method signatures for the
constructors are DIFFERENT when
you include the parameters as
WELL as the name of the method

You can do this with ALL methods –
not just constructors

This is an example of method
overloading and can also be
referred to as static polymorphism

43

public class Calculator

{

public double add(double num1, double num2)

{

return num1+num2;

}

public double add(double num1, double num2, double num3)

{

return num1+num2+num3;

}

}

public class Main

{

public static void main(String[] args)

{

Calculator calc = new Calculator();

double result = calc.add(2.2,3.1);

}

}

44

public class Calculator

{

public double add(double num1 , double num2)

{

return num1+num2;

}

public double add(double num1, double num2, double num3)

{

return num1+num2+num3;

}

}

public class Main

{

public static void main(String[] args)

{

double result = add(2.2 , 3.1);

}

}

The version of add that is used
is determined by the method
signature…

…two doubles supplied as
parameters, therefore the
version that runs is the one
that TAKES two doubles (as
opposed to the one with 3)

 Methods can be given parameters from and return values to

the code that calls them

 A constructor is a special kind of method

 Constructors run whenever an instance of a class is created

 (i.e. whenever new MyClass() is done)

 All classes have a constructor even if you don't declare one

 If you don't, a default constructor is created by Java behind the

scenes – it will have no parameters and does nothing*

45

* this is not entirely accurate, but is an acceptable simplification for now

 Constructors have no return type but can accept parameters

 If you declare a constructor, the default one is no longer

created by Java

 If you declare a constructor with parameters, you will no

longer be able to create instances of your objects with a
parameterless instantiation e.g. new MyClass()

46

 Methods (including constructors) can be declared

with the same name as long as the method

signatures differ

 i.e. they must accept a different combination of

parameters

 This is called method overloading or static

polymorphism

 If you create a parameterised constructor, you can

use this to add a non-parameterised one

 …which would restore the ability to do new MyClass()

47

