

 Paul Neve

 Module Leader for

Programming 1 (CI4100)

 Lecturer on

 "Thinking like a programmer"

 Introduction to Java (CI4100A

and CI4520)

 Introduction to Web

Programming (CI4100B)

 Client-side web programming in

Javascript (CI4100 and CI4520)

 Object Oriented Programming

with Java (CI4100A)

 Web Applications with PHP and

Javascript (CI4100B)

 Workshop MC

 paul@kingston.ac.uk

 to arrive on time for lectures and workshops

 to keep you informed about everything you need to know as

the module goes on (e.g. dates, times, procedures)

 to provide good lecture slides and workshop materials that

will help you to learn

 to be available to support you during tutorials, office hours

and via email

 to do our best to answer any questions in lectures

 to make the module engaging, interesting, and hopefully

fun!

 To show consideration for your fellow students by:

 Arriving on time for lectures and workshops

 If you are late, please enter the room quietly

 If you are really late, you will be refused entry!

 Attendance is taken at the start of a lecture

 If you're late, officially you were never there…

 Switching off mobile phones (which means no texting )

 Asking questions – if you are wondering something, chances are

someone else is wondering too!

 To show consideration for yourself by:

 Turning up to all lectures and workshops

 Making use of the materials we make available online

 Bring pen and paper and MAKE NOTES!

 Not everything we say in lectures or workshops will be in the

Powerpoint slides or available on the online learning environment…

 …but anything we do say in lectures or workshops can and will be used

against you in a court of law exam or coursework! 

 Using the lectures, workshops and online materials as a starting

point for study – not the end point of your learning!

 We will NOT spoon feed you! You will not ever be given step by step

instructions i.e. “do this, then do this, then do this”! You will need to

think for yourself!

 Academic Regulations document GR1:

58: “To remain re-enrolled on a course leading to a University award,
you must

 comply with any specific attendance requirements for your course

61: “You are expected to attend all-course-related activities unless you
have a good reason for absence”

 If you do not attend, you risk your enrolment at the university!

 If applicable…

 You also risk the Student Loan Company being notified

 They will want their money back – all of it 

 You also risk Immigration being notified

 They might turf you out of the country!

 Turn up to your lecturers and workshops – not just for this module
but for ALL modules! It’s a no-brainer really…

 We’ll use clickers throughout the module during lectures

 We’ll use clickers to make the lectures a bit more

interesting, but also (as a side effect) to monitor

engagement and attendance

 Little known fact: the correct term for “clicker” is audience

response system or ARS

 NEVER FORGET YOUR ARS! 

 BRING YOUR ARS TO EVERY CLASS!

 IF YOU FAIL TO GET YOUR ARS TO CLASS, THEN OFFICIALLY

YOU FAILED TO ATTEND!

 (this could have repercussions for your student loan or lead to

grief from immigration people)

A. Yes

B. No

C. I am here in body, but

not in spirit

Yes No

I a
m

 h
ere

 in
 b

ody,
 b

ut n
ot i

n ..
.

66%

29%

5%

 That you will do your OWN work!

 The assignments in this module are NOT group work, they are

individual work

✔ "I asked my friend for help, and then used their advice to create my

own solution"

 "My friend and I worked on the solution together and then both handed

in the same solution we created together"

 This is collusion, and considered the same as plagiarism!

 Don't be tempted to take shortcuts

 If you get a solution from a friend and then submit it as your own, you

will be heavily penalised!

 IT IS BETTER TO GET ZERO FOR SOMETHING THAN TO CHEAT,

GET FOUND OUT, AND GET ZERO PLUS AN ACADEMIC

MISCONDUCT CHARGE!

 …and you WILL be found out!

 "…participants who had taken notes with laptops performed worse

on tests of both factual content and conceptual understanding"

(Mueller and Oppenheimer, 2014)

 "…those who took organized notes showed much less forgetting

over a 24h delay than those who used a transcription strategy"

(Bui and Myerson, 2014)

 NB:

 "organized notes" = handwritten

 "transcription" = typing what the lecturer says verbatim on a computer

 So, bring pen and paper and MAKE

NOTES!

 You will study four submodules

 Each submodule lasts for approximately 5 weeks (half a

teaching block)

 The schedule for Programming 1 students is as follows:

 CI4100 Programming 1 students:

 On the Monday of Enrichment Activity week (EAW; this happens

in week 6) you'll be assigned to one of the two teams, either

Team Skywalker or Team Solo

 (no, there is no Team Chewbacca, you can't be in that!)

 You may change your assignment during that week and that week

alone

 After this your team membership is fixed

 CI4520 Object Oriented Programming students:

 For the duration of the time you spend with me in Teaching Block

1, consider yourselves honorary members of Team Skywalker…

 In Teaching Block 2, you go off to do C++ with Ahmed

 Most of the practical activities during the module will be

done using our NoobLab environment

 NoobLab lets you view workshop details, write your program

code, and see the results right there in your web browser in

a single place

 We will see NoobLab a bit later…

 There will be practical workshop activities for you to do

 These can be done either during lab sessions or at home

 Each activity will result in you being awarded a "medal"

 There are three types of medals: gold, silver and bronze

 A gold is worth more than a silver, which in turn is worth more than a
bronze

 Some activities have only a single medal possibility attached –
others offer the opportunity to get a varying grade of medal
depending on how good your solution is

 You can get help from tutors, workshop assistants or friends in
class – but your solution to a medal activity MUST be your own
work

 IF YOU ARE CAUGHT USING SOMEONE ELSE'S WORK TO GET A
MEDAL, YOU MAY BE GIVEN ZERO FOR THE ENTIRE MODULE!

 NoobLab KNOWS when you are doing this…

 …YOU WILL BE FOUND OUT!

 There will also be in-class questions which you will use your
clicker to answer

 These slides will stand out because they will be in orange

 THESE COUNT TOWARDS YOUR MODULE MARK

 If you forget your clicker – tough! No marks!

 (It’s like turning up to a written exam without a pen. No-one is
under any obligation to lend you one!)

 So, again, BRING YOUR ARS TO EVERY CLASS!

 Every lecture will probably have a couple of questions
sprinkled in there for you to answer – so make sure you are
paying attention throughout

 At the end of each unit, we’ll also have a final in-class test
to check what you’ve learned over the last five weeks

Practical

Work

60%

In-Class

Tests and

Questions

40%

 In the first instance, email the specific lecturer or workshop

leader that is dealing with the work you need help with

 If you don't hear back from them, email the module leader

 For CI4100 it's Paul – paul@kingston.ac.uk

 For CI4520 it's joint leaders

 Ahmed Shihab – a.shihab@kingston.ac.uk

 Dave Livingstone – d.livingstone@kingston.ac.uk

mailto:paul@kingston.ac.uk

 If you need to come and see us, email first to request an
appointment

 Always use the module code in the subject line

 CI4100 for Programming 1

 CI4520 for Object Oriented Programming

 (For Programming 1) Later, when you’re in your groups, make
sure you specify if you’re Team Skywalker or Team Solo

 Give us as much information as you can about you and the issue
you're emailing about – there are a lot of you 

 Look on the (many!) resources and information sources available
to you first – chances are any questions have been answered
already

 If I get an email that has been answered on Studyspace, or in class,
you will simply receive a response saying “This question has already
been answered”

 Remember we receive hundreds of spam mails that we delete
immediately – don't make your email look like one of them!

 YOU are responsible for YOUR learning!

 You will NOT be spoon-fed!

 You will never be told what to do, step-by-step.

 You are going to have to think for yourself!

 We will expect that you can read Studyspace, that you are

paying attention in class when I tell you about upcoming

dates and events, and will take responsibility for being in

the right place at the right time

 If you do not attend a lecture, or if you weren’t paying

attention – TOUGH. YOU are the one who will lose out

because of it.

 Last word: THIS IS NOT SCHOOL

 Learning to program is about learning how to solve problems

 Learning how to write programming language code should come

after we have learnt how to solve problems

 I will often refer to this skill as "Thinking Like A Programmer"

 So, the first part of this module focuses on analyzing,

understanding, and solving problems

21

 A lot of everyday activities use some of the skills needed to

program a computer:

 Cooking a meal for guests: you need to know how many guests so

that you can work out what quantities of ingredients are needed; you

need a method for making sure everything is cooked and ready at the

right time

 Driving somewhere new: you need to plan a route, estimate the

duration of the journey, decide whether the car needs more fuel

 Getting dressed: where are you going today? What clothes are

appropriate? – you don’t wear the same clothes to graduation as you

would to a beach party; what order do you put your clothes on

22

 A computer program is like a recipe. A good recipe tells you:

 what ingredients (and their quantities) are needed

 how to prepare the ingredients

 in what order the ingredients must be added

 what temperature the oven should be set to

 how long to cook everything

 A recipe has a clear method. An ordered series of steps that

must be followed exactly to get the right result. Recipes are

repeatable: do it the same each time, get the same results

 A program tells a computer what steps to carry out and in what

order in order to get the correct result

23

 You may hear the word algorithm used when people talk

about programs or programming

algorithm
noun

Word used by programmers when they do not want

to explain what they did

 You may hear the word algorithm used when people talk

about programs or programming

algorithm
noun

A step-by-step procedure for calculations, or to solve

a specific problem

 i.e. our "recipe"!

"Walk across the room"

 When we give a set of instructions in natural languages the

average human will make many assumptions about what is

meant

 "Walk across the room"

 What if there is an obstacle in the way?

 Most people would assume that the obstacle should be avoided –

but a computer would not!

 If you were giving the same command to a computer, you would

have to explicitly state that the obstacle should be avoided

 How would you give instructions to drive from the restaurant to "home?

 One example might start off by saying

 "Start from the restaurant, drive down the road and turn right at the first lights…"

Programming is like trying to give

directions to a really, really, really

stupid person

* A prize goes to who can tell me the first law of computers…!

 Natural language can be ambiguous (ask a lawyer), and one idea
can be expressed in multiple ways:

 “empty the bin when it is full”

 " “if the bin is full then empty it”

 “should the bin run out of room then you must empty it”

 Programmers must express themselves concisely and clearly:

 computers will not interpret what we say or try to infer what we
mean

 e.g. did we mean "traffic lights", or "street lights", or "lights in the sky that
human beings call stars" when we said "turn right at the lights"

 " we must tell them precisely what we want them to do

 " computers will follow your instructions to the letter even if the
instructions are obviously wrong!

 computers will follow your instructions to the letter even if obvious
things are missing!

31

 When we write a program, we should first solve the problem of

deciding how the task may be carried out

 Only when we've got a plan for the "recipe" or program and

understand the steps and "ingredients" involved do we turn the

solution into something the computer can interpret.

 This planning before any programming or creation of code takes

place is crucial

 If we don't know how the task may be accomplished in the first

place, how can we write program code to achieve it?!

32

 A program is basically a concise statement that communicates

a process

 Some say that a good program is the most concise statement

possible!

 At beginner's level, a "good" program is probably one that works 

 The ability to think like a programmer is an important skill in

the real world…

 …to communicate efficiently, without ambiguity, in a clear way in

as few words as possible

 …to work with and manage computer scientists!

 When you create your solution to a problem, you must identify any
assumptions you are making and remove them

 "turn right at the lights"

 …assuming "lights" will always mean "traffic lights"

 Assumptions or ambiguities might also come from the person
asking for the program (the "specification")

 "Write a program to calculate interest on a bank account"

 What formula should be used?

 When is interest paid?

 Is there tax payable?

 If the specification has too many assumptions or ambiguities

 Option 1: go back to the person who is asking for the program (the
"client") and ask them to clarify

 Option 2 (when client unavailable): clearly choose one possible
scenario and stick to it – but document what you have chosen

A. It doesn’t specify where to get the bread and
filling from

B. It doesn’t specify what is meant by “butter”

C. It doesn’t specify what should be done if
there any ingredients are missing

D. It doesn’t say that you should join the two
slices of bread together at any point

E. All of the above

F. All of the above plus other problems too!

G. None of the above

H. There’s nothing wrong with these
instructions – what are you on about, Neve?!

A. B. C. D. E. F. G. H.

2%
0% 0% 0%

2%

79%

16%

0%

Making a sandwich:

First, get the bread. Then, get the filling. Butter both sides of the

bread. Put the filling between the two slices. Then enjoy your

sandwich!

 Programming is all about breaking a (large) problem down

into smaller problems

 Solve the smaller problems individually and you'll end up

with a solution to the larger problem

 If you can acquire this skill, programming will become easy –

even fun!

 Without this skill, programming will be a mystery!

 The first part of this module is all about developing this skill

 Computer programs are like lego

 There are different types of blocks

 The blocks fit together in certain ways

 Some combinations fit together, some don't

 The combination of blocks fitted together ends up as a sum

greater than the whole of the parts

 The skill of programming is knowing how to fit and arrange the

blocks so that the combination solves your problem

 Different blocks and combinations of blocks map onto the

different aspects of your programming problem

 Programming languages are very logically precise and make

it harder* to issue statements that are ambiguous or rely on

implicit assumptions

 However, most programming languages are very strict about

structure, grammar and punctuation

 Consider in English

 "Much to learn, you still have"

 "you, StIll; HAVE much. To learN"

 Despite mangling grammar in the first example and

punctuation in the second, an English speaker should still be

able to decipher the intent behind these statements

 But programming languages are not so forgiving:

 System.out.println("Hello there");

 system.out.println("Hello there");

 SYSTEM OUT PRINTLN "Hello there"

 System.out.println(Hello there);

 System.Out.Println("Hello there");

 System.out.println("Hello there);

 System.out.println("Hello there")

 I think the worst thing for a novice to use when learning how

to think like a programmer is a programming language!

 In the beginning, the important thing is for you to learn how

to break problems down, create solutions, and think

logically

 This is difficult enough without a programming language

complaining about missing semi-colons or brackets in your

code in a bizarre inscrutable way

 "Parse error: Syntax error, unexpected T_ECHO"

 Many novices get frustrated and turned off because of this

before ever acquiring the skill of thinking like a programmer

 We don't want this to happen to you!

 KU has its own online learning environment for programming

called NoobLab

 NoobLab lets you do programming activities in your web

browser from any computer, either in the uni or elsewhere

 NoobLab has a variety of features that are designed to make

learning programming easier and more fun

Navigate to the different parts of a workshop here

See your current medals and the lecture slides here

Click links like these to try for a medal

See what output your program

produces here

Type your program code

here

Use these buttons to run, save

and load your programs

The general content and/or instructions

for a workshop appear here

 The current page is highlighted in black

 There are different icons which tell you activities are still

left to do on a given page of a workshop:

RED

CIRCLE

No medal

activities

attempted

yet

ORANGE

CIRCLE

Some medals

completed

but still

some left

to do…

GREY

TICK

All of the

activities

have been

done, but

not to the

gold medal

standard…

GREEN

TICK

All of the

activities

have been

done to the

gold medal

standard…

INFORMATION

PAGE

These pages

have no

medal

activities

(but you still

need to read

them!)

 Meet Carol – the brain dead virtual robot with a
shopping trolley

 Carol lives in a grid of squares

 Each square can contain either a wall, a number
or "item", or the "goal"

 Carol can move one square forward, turn left, pick up an
item and put down an item

 She can also detect whether her path directly ahead is
blocked, whether she is at the goal, whether there is an
item currently in sight and how far away such an item is

 Your job will be to compose the commands required to
navigate Carol through mazes and get her to the goal

 Later, you will also have to re-arrange the list of items into a
new order before going to the goal

 To begin with, we will compose programs to solve Carol

challenges using a drag-and-drop block based system

 Demo and run through this week's workshop exercises…

 Most exercises in NoobLab will result in you winning a "medal"

 Medals count towards your final mark!

 There are three grades of medal: gold, silver and bronze

 The level of medal is dependent on how hard an activity is or how

good your solution is

 Some activities will give you the choice between (up to) three

possible challenges – an easy one, a medium one and a hard one

 Beat the easy one, you get bronze

 Beat the medium one, you get silver

 Beat the hard one, you get gold

 In these activities, you can only win ONE of the medals

 e.g. if you do the bronze and then go on and win the silver, you only

get to keep the silver

 (Usain Bolt doesn't get bronze, silver AND gold after all!)

 Other activities are based around a single challenge

 Depending on how hard the single challenge is, you'll get a

one-shot bronze, silver or gold medal to add to your tally

 Notwithstanding the issues of collusion, we don't want you to

work in complete isolation, never talking to any of your

fellow students

 Bouncing ideas off of other programmers and discussing your

work is an important part of learning about programming

 So – we have put into place a means where you can

acknowledge the help other students gives you

 These are called "assists"

 When you win a medal, you have the opportunity to award

some of the points you gain to another student – this is

called an "assist"

 Depending on the medal, you'll be able to award up to three

points to the person(s) who assisted you

 You can award assist points to more than one person – if the

medal has enough points to go around, of course…

 If you are the recipient of those points – the "assistant", i.e.

the person who helped your colleague get the medal – then

these count towards your final mark!

 People are more likely to help you out if you're stuck!

 If someone helps you win a gold medal that you couldn't have

won without the help, even if you give them some of your points

you'll still be better off than if you'd got nothing for the exercise!

 People won't help you if you get a reputation for being stingy

with your assist points

A. “Can I please have your
finished solution to workshop
3, exercise 2? I'll give you some
assist points.”

B. “Let's all work on this activity
together and create one single
solution. Then I'll submit it for
a medal on my screen and give
the rest of you assist points.”

C. “Hey, you've got the medal for
workshop 3, exercise 2! How
did you manage to get Carol to
figure out whether she'd
reached the goal once she got
through the gap in the wall? If
you help me out I'll give you
some assist points.”

A. B. C.

15%

59%

26%

 Plagiarism is STILL plagiarism!

 "Can I please have your finished solution to workshop 3, exercise

2? I'll give you some assist points"

 This is academic misconduct!

 best case scenario you'll both be capped for the unit at 40%

 worst case scenario you get expelled from the university…!!!!

 Collusion is STILL collusion!

 "Let's all work on this activity together and create one single

solution. Then I'll submit it for a medal on my screen and give

the rest of you assist points"

 This is academic misconduct!

 best case scenario you will be capped for the unit at 40%

 worst case scenario you all get expelled from the university…!!!!

 We want you to learn from each other!

 We don't want you to do someone else's work for them!

 By all means help your colleagues – give them pointers,

discuss how you did things with them, brainstorm with them

 BUT…

 When all's said and done you MUST do your own work! You

can get help, but what you submit for medals has to be your

own work.

 The whole assist system is a new thing for this year

 We want to encourage collaboration, a lively workshop

environment where people learn from each other

 We want to see no plagiarism or collusion, though!

 If the assist system is abused we reserve the right to either

deduct the points awarded or, if it comes to that, to turn it

off for the entire module

 This module will be very much a practical, hands-on affair

 Most activities will use NoobLab, and you'll do practical
programming activities

 These activities win you "medals", which count towards your
final grade

 You will be assessed through these practical programming
activities and in-class questions

 Questions will happen during in-class tests but also there
will be a few each week during lectures.

 Attendance is key! Every time you don’t turn up you are
throwing marks away!

 Do your own work! Get help if you need it, but your
solutions must be your own.

 Programs are like recipes

 They describe a series of ingredients, what you do to those

ingredients, the way in which the ingredients fit together and the

order in which things need to happen

 Because computers are dumb, we have to explain everything

 We cannot make ANY assumptions at all

 If there are any implicit assumptions in our "recipe", we must

eliminate them first – either by consulting our "client" (the person

asking for the program) or by making a decision ourselves

 The first thing you need to do is to learn to "think like a

programmer"

 This is a very specific, logical way of thinking (if not

particularly human!)

 It involves

 Being able to break a problem down into smaller parts

 Being able to create a set of instructions that has no ambiguity or

assumptions

 Programming courses often start off throwing you in using an

actual programming language, with a complex syntax

 Programming courses often involve rather abstract,

sometimes mathematical problems…

 For example…

 In the early stages we are trying to teach the skill of

"thinking like a programmer" – this is key

 It is important* that the problems you solve as you practice

and learn this skill are not so abstract or mathematical that

you can't easily visualise them

 It is important* that the tools you use to practice and learn

this skill do not have other complexities or conventions to

learn that will get in the way of your learning

 e.g. Unexpected T_ECHO style error messages…!

 It is important* that you realise that programming does not

have to be mystifying!

 It is important* that you have fun while you learn!

* well, *I* think it's important anyway.

 "But I already know how to program in Java/C/Visual

Basic/Asgardian Machine Language – this block/Carol rubbish

is going to do my head in"

 Maybe - but being able to visualise what can go where and what

can fit where is a crucial part of being a good programmer

 We don't just want you to be programmers – we want you to be

good programmers

 The blocks represent the constituent parts of a program

 Being able to visualise and know instinctively how a program

structure fits together, how the bits of code link into place and

what fits where is a crucial skill

 Using the blocks will let you learn and/or expand this skill

without the drag factor of your existing assumptions and/or

knowledge

