

 Regardless of what programming language you're using, there

will (usually) be the same fundamental constructs:

 Conditional statements (making decisions)

 Repetition

 Conditional repetition

 Defining new functions

 Programming is like building something with lego – the

fundamental constructs are the bricks

 Some bricks fit together – some do not!

 It is up to you to assemble the bricks in an order that makes

sense to build

 You probably ended up with solutions that looked

a lot like this in the latter part of last week's

workshop…

 "Carol is stupid" – this we know; she only has a

very limited set of commands

 We've had to have a lot of repetition in our

programs so far to compensate for the lack of

commands

 Wouldn't it be great if we could create new

commands to address Carol's limitations and

reduce this repetition of code?

 Can anyone think of a new command for Carol

that'd be really handy to have?

 Carol has no single command to turn right

 We've had to turn left three times to simulate

turning right

 This involves a lot of repetition whenever we

want to turn right

 Instead, we can use a function to tell Carol how

we turn right

 Once we've defined this turn right function, we

can call it as many times as we like

 A function is a section of a program that defines how to

perform a specific task (e.g. "turn right")

 A function has a name

 The function contains the instructions required to perform

the task

 In some programming languages, a function might be called

a procedure or a method – but the principle is the same

 …we'll use function as the terminology in our Carol blocks…

 You can define a function using the blocks

underneath the Functions menu

#2: Click here and

type to give your

function a name

#3: Drag the instructions that

perform the task of your function

into this gap

#1: Drag your function block

onto your program canvas

area*

 Whenever you declare a function, an extra block will be added

underneath the Functions menu item

 You can drag this block into your program to call your function

This block only appears

if we declare a function

called turn right

Before After

 When you declare a function, you are

simply explaining how to do something

new

 The instructions in the function ONLY

happen when the function is called

 So, with that in mind, what is the first

line of this program that will run?

• This is the first instruction of the

program to run

• Even though the function appears as

the first thing in the program, the

code inside it does not get run until it

is called

• So, if a piece of code is inside a

function, think of it as being "saved

for later on"

• THIS IS A CRUCIAL CONCEPT TO

GRASP!

The part of your program outside of the

functions is called the main body of your

program

The program will ALWAYS start running at

the first line of the main body

 If you find yourself using the same sequence of instructions
repeatedly within the same program, you should probably
put them inside a function

 e.g. strewn throughout your program!

 As you become more skilled in the art of thinking like a
programmer, you will be able to spot things that might need
to be functions up front before you write the code

 By all means write these functions in advance…

 For example, if you spotted that a particular Carol grid will often need
you to move a distance four squares, perhaps you should write a "move
4 squares" function before anything else…

 It might help to think of functions as a way of creating brand
new commands (e.g. "turn right")

A. Bread

B. Filling

C. Sandwich

D. Slices

E. Butter
Br
ea
d

Fil
lin
g

Sa
nd
wi
ch

Sli
ce
s

Bu
tte
r

0% 2%

82%

6%
10%

Making a sandwich:

First, get the bread. Then, get the filling. Butter both sides of the bread.

Put the filling between the two slices. Then enjoy your sandwich!

 One of the reasons why computers are powerful tools is that

they're very good at doing the same thing repeatedly - they

do not get bored or tired

 We've already made programs with repeated instructions,

e.g. and

 It's a bit of a pain in the backside to have to keep dragging

the same block onto the canvas…

 What if we had a 20 x 20 grid and wanted to move from one

side to the other?

 What if we had a 200 x 200 grid?!!!

 The for loop is one of the basic constructs of programming

 Every programming language has some variation of it

 You specify

 A start number

 An end number (or condition)

 A counter variable

 we'll talk more about variables later on

 (optionally) What happens to the counter variable each time the

loop repeats

#1: Click here to

specify the name

of your counter

variable

#2: Specify the

starting value of

the counter here

#3: Specify the

finishing value of

the counter here

#4: Each time the

loop repeats, the

counter is increased

by this value#5: Drag the instructions you want

repeated into this gap here. There

can be as many as you like

NB: the display

block displays

text or a number

to the screen

Displays
0

2

4

6

8

10

12

14

16

18

20

Displays
1

3

5

7

9

11

13

15

17

19

WHY?

A. 1

B. 10

C. 3

D. 4

1 10 3 4

0%

45%

52%

3%

 You can put blocks within blocks, if you need to…

 For example, a for loop can go within a function…

 …and a for loop can call a function…

 (although a for loop can't actually contain a function

definition… why do you think this is?)

 All of our Carol mazes so far have been static

 What about if we wanted to write a program for a maze that

had variable configurations?

 What if we needed to check if the path ahead was blocked

and take different action if the coast was clear?

#1: Drag the condition which has

to be true and clip it on here

#2: Drag the instructions which

will happen if the condition is

true into the gap here

 Carol has a number of things she can check for which you

can use as a condition on your if statements

 Drag the condition you want and clip it onto your if block

 Only move if Carol isn't blocked (i.e. the path ahead is clear)

 If she's blocked, turn left before moving

 You can expand an if block using else

 else allows you to give a second series of instructions that

will happen if the condition is NOT true

 To add an else to an if block:

#1: click the star –

the "speech bubble"

shown above will

appear

#2: drag the else

block in the speech

bubble into the if

block within the

speech bubble

#3: the if block on

your canvas will

expand as shown

opposite

if carol is blocked…

…do these

instructions…

…otherwise, do

what's in here

 You can have a number of conditions by using else if:

A. She will move into the square with the
red X.

B. She will not move but she will turn left

C. She will turn left and then move into the
square with the green X

D. She will not move but the text I am the
winner! will be displayed

A. B. C. D.

87%

2%

10%

2%

X

X

 Sometimes, you need to repeatedly do something until a

condition is met

 e.g. keep moving until you encounter an obstruction

 Programming languages all have loops which allow you do do

this

 We have two blocks we can use in our Carol programs:

Drag the condition which

has to be true for the

instructions to repeat

and clip it on here

Drag the instructions

which will repeat if the

condition is true into

the gap here

Drag the

instructions

which will

repeat if the

condition is

true into the

gap here

 There are two main differences between a while loop and a

repeat/until loop

 #1

 A while loop checks the condition BEFORE the instructions are

repeated

 A repeat/until loop checks the condition AFTER the instructions are

repeated

 #2

 A while loop repeats as long as the condition is true

 A repeat/until loop repeats UNTIL the condition becomes true

 …so it repeats as long as the condition is false

 Note how the condition is

reversed… remember:

 With while it repeats as

long as the condition is

TRUE

 With repeat/until it

repeats continuously UNTIL

the condition becomes true

– so it repeats as long as

the condition is FALSE.

 Other things to consider:

 What is the minimum

number of times each

loop will repeat?

 What happens first? Does

it check the condition

BEFORE or AFTER doing

the command?

 Also don't forget that you

can put as many

commands as you like

inside the loop block! Our

examples here have only

one but we could have

had loads and loads…

A. Both blocks would run without an error

B. Block #1 would run but block #2 would
cause an error

C. Block #2 would run but block #1 would
cause an error

D. Neither block would run without an
error

A. B. C. D.

25% 25%25%25%

BLOCK #1

BLOCK #2

 As you write code, you will inevitably find that there are

certain functions that you use again and again across

different solutions

 e.g. turn right, move until blocked, etc

 Keep a "useful functions" file and as you create and find new

functions, add it to the file

 This will save a LOT of time in the future when you're

building new solutions!

 A recursive function is a function that calls itself

 (yes, this is a bit like the plot of the film Inception)

 Consider if we wanted to write a function that would move

Carol until she encountered a wall

 We might use the while loop from the previous page in a

function, e.g.

 Recursion gives us another possibility…

 Here is an example of the "move until blocked" function that

uses recursion

 If you complete this weeks workshops and are at a loose

end, try it out…

 Can you figure out how it works?

 We have learned that there are a suite of basic programming

constructs

 e.g. IF, FOR, WHILE, REPEAT, functions, etc

 These constructs are like lego blocks

 Some blocks fit together

 Some blocks can clip inside other blocks

 We clip lots of blocks together to make our programs

 Carol has up until now let us see the results of our programs

in a visual way

 We've seen the effects of repetition

 "Move ahead four squares"

 "Turn left three times"

 We've been able to introduce some conditional processing

 "if the way ahead isn't blocked keep moving"

 "if the way ahead IS blocked turn left"

 These are crucial programming concepts, but there are

others you need to learn that don't really work well with

Carol 

 So… we are going to go up a level and start looking at more

abstract problems

 Virtually every beginner's course in programming or every

tutorial in a given programming language starts out with a

simple program to print Hello world! on the screen

 We won't break with tradition, so…

raw code version:

display "Hello world!"

 Composing the blocks for Hello World:

1. Choose the block from the Display menu (surprisingly

enough!) and drag it onto your canvas

2. Choose the block from the Text menu and drag it

onto your canvas

3. Drag the block and clip it onto the side of the

block

4. Click between the quotes of the block. You will get a

flashing cursor and will be able to type text. Type Hello world

into this area

 The block is what is called

a constant

 This means it does not change (it is constant!)

 In this example, this constant is text based

 The text between the quotes is the value of the constant

 If we clip a text constant to a block, the result will

be to print that text to the screen

 In programming, you will often hear the term string used to

describe text

 (this is derived from the phrase "a string of text")

 Get used to hearing the word string and using it yourself – it

is part of the basic terminology of programming

 We can also have constants that are numeric

 A numeric constant can be found on the Numbers and Maths

menu in the form of the block

 Click on the 0 to change the number

 You can clip a numeric constant on the block too,

e.g.

 Is there a difference between the two block combinations?

 look at the colour coding

 look at the quotes…

 Will there be any difference in what gets output?

 Is this difference important?

 Constants are all well and good, but we need computers and

the programs that run on them to be able to handle things

that change… e.g.

 The current score in a computer game

 The current speed of your car

 The current temperature in your heating system

 The clue is in the name; a variable is a piece of information

that varies, i.e. it can change

 A variable in programming is like a box for data

 You can put things in the box

 Each box is labeled

 This means that you can tell which box is which

 This means that you can refer to a specific box when you need to

raw code version:

set box1 = "Paul"

raw code version:

set box2 = 57

raw code version:

set box3 = -2.7521

 From the Variables menu, drag the block onto

the canvas

 It will use a variable name of p as a default…

 …this is a bit rubbish…

 …you should change the variable name by clicking on the

and then selecting New Variable

 The variable name is like the label on the side of the box:

Variable name

 About variable names:

 You should always choose a variable name that tells you what the
variable is being used for

 Most programming languages have restrictions on the letter and
symbols (characters) you can use in variable names

 If you avoid using spaces, avoid having numbers at the start of the variable
name, and avoid anything that isn't a letter or a number you won't go far
wrong

 Good variable names:

 counter, score, position, cost, costOfItem, currentTemperature

 Bad variable names

 p, myVariable, var1, box1

NB: Yes, "box1" would be a bad variable name! Yes, I've been using it on these
slides – but only to reinforce the concept of variables being like boxes. The
name "box1" tells us nothing about what the variable is for or what we're
storing in it – therefore it would be a rubbish name to use in real programs!

 You also need to specify what you want to put into the box

 This can be a constant, another variable, or a maths

expression (which we'll see later)

 For now, let's drag a constant (either a text or number one)

into the empty space of your variable block

 Don't forget to give your constant a value – don't leave it as

zero or as an empty text string (unless that's what you want)

or
clip in

here

 You can retrieve what's in your box and make use of it too

 In the Variables menu, find the block and drag it onto

your canvas

 Click the and select the name of the variable you want

to refer to

 You can clip a variable block onto any other blocks where it

fits, for example:

 What would the result of running this code be?

Variable block is

clipped onto the

display block

 If you assign a new value to a variable, any existing value is

replaced with the new one!

Prince

Prince

Funky

Block #1 Block #2

 What will be in the variable newTemp?

 What will be displayed on the screen?

 Remember how we used the FOR loop as a way to repeat

Carol moves a set number of times, e.g.

 The FOR loop also involves defining and making changes to

the contents of a variable

 Here's a non-Carol example:

 Here's a non-Carol example:

Declare a variable

called banana

banana starts off

with this value

The loop will finish

when banana gets

to this value

Each time the loop

repeats, banana

increases by this amount

 "If the block fits…"

 What's the difference? Why?

 PS: don't forget to name the variable in your loop when you

drag a new FOR loop block into your programs…

 Most programs will involve some form of mathematical

calculation

 Most programming languages use the same set of symbols to

perform the basic mathematical operations

+ for Add - for Subtract

* for Multiply / for Divide

^ for Powers

 To perform a calculation, we use the block from

the Numbers and Maths menu

 There are two sides to the calculation block

 The "holes" in the block on each side have to be filled

 You can fill them with

 numeric constants

 variables (that contain numbers)

 other calculations

 You should also select which operator you need

(i.e. + - / * ^)

side 1 side 2

 When you have composed a calculation, you need to do

something with the result

 You might

 print the result to the screen

 put the result into a variable

 use the result in another calculation by nesting a calculation

block within another calculation block

 Use the result as part of the condition for a FOR loop!

 The first block sets the count variable to 1

 The second block increases the value of the count variable

by 1

 Why? How?

 The moral of the story – you can refer to the variable you're

setting when you calculate a new value for it

raw code version:

set count = 1

set count = count + 1

A. 7

B. 10

C. 17

D. 3

E. 5

F. 8

7 10 17 3 5 8

5% 6%

0%2%1%

86%

A. 7

B. 10

C. 17

D. 3

E. 5

F. 8

A. 7

B. 10

C. 17

D. 3

E. 5

F. 8

7 10 17 3 5 8

2%
5%

0%

81%

0%

12%
A. 7

B. 10

C. 17

D. 3

E. 5

F. 8

 Computer programs (usually) need to interact with the user

in some way

 Computers (usually) have some kind of device attached that

lets the user interact with the machine

 e.g. a keyboard

 In your workshop exercises, you will write programs that get

the user to input data from the keyboard

 Use the block to do this

 This will pause the program and wait for the user to type

something followed by the return key

 The value they type on the keyboard will then go into the

variable

 Don't forget to name your variable something better than p!)

 Functions allow us to define a set of instructions and then
call them later when we need to do this set of instructions

 A function has a name

 When we call the function, we refer to this time

 Functions ONLY run when they're called

 …even if they're declared at the start of the program, they don't
run until (and unless) they're called

 You can think of functions as a way of building new
commands using the existing ones

 The main body of the program is the part of the program not
enclosed by functions – the first line of this is where the
program will start

 When you have a function that calls itself, this is called
recursion

 As well as functions, there are several other fundamental

constructs in programming that allow our programs to make

decisions and to repeat instructions

 The if statement makes a one-off decision

 The for loop repeats a set of instructions a specific number of

times

 The while loop and the repeat/until loop repeat a set of

instructions until a specified condition is met

 Virtually all programming languages will have some form of

these fundamental constructs…

 A variable is like a box

 The box has a label (the variable name)

 You can store one thing in the box at a time

 You can modify what’s in the box with calculations

