

 We have written programs to navigate Carol around a maze

 These were visual problems

 We have written programs that interact with the user to get

input and calculate results and produce output

 These were abstract problems

 Until now we have been using our block based system of

programming

 This has helped you get a head start and concentrate on

problem solving – but now it's time to look at more

conventional approaches to programming

 Today, and in this week's workshop, we'll be discarding the

blocks and you'll be writing the text based code to solve your

problems by hand

 You've actually been creating text-based code in all of our

activities so far…

 The block system generates text based code as you drag,

drop and move blocks about the canvas

 The text based code is what NoobLab runs - not the blocks

 This text based code is a language

of my own devising called Banana

 Why is it called Banana? Well, when

I teach programming people often

ask me what to call things in their

code, e.g.

 Q: “What should I call my variable?”

 To which I usually say

 A: “You can call it whatever you like…

you can call it banana if you like!”

 Banana is designed to be like

pseudocode

 Pseudocode is simpler than natural language, which helps

make it less ambiguous

 It is half-way between natural language and very logically

precise "real" computer languages

 There is no single "standard" of pseudocode – if you Google

for examples you'll find all kinds of different things, e.g.

 some use PRINT, some use DISPLAY

 some use SET for variables, others use DEFINE

 This works because pseudocode is NOT a programming

language – it's just a technique for helping you design and

plan your programs before you write them in a real language

 So, pseudocode is not something you would type into a

computer and run – you would just use it to map things out

in advance

 Banana is like pseudocode – it uses many of the same

principles and keywords

 If you can read and write Banana, you'll be able to read and

write pseudocode

 We distinguish between Banana and pseudocode because

 Banana code can be run on a computer – pseudocode is not

 There are rules and standards for Banana code – there are none

for pseudocode

 Displaying information is one of the six basic operations that

a computer can perform

 We do this in Banana operation with DISPLAY

 Use this to print something to the console, e.g.

display "Please enter your age"

get age

display age

 (What's the difference between the two uses of display here?

What will each of them print to the console?)

 The ability for a computer to receive information – either

from a human being or some other source – is another basic

operation

 In Banana, we can use the verb get:

display "Please enter your age"

get age

display age

 In the previous example, age was a variable

 Reminder:

 A variable is like a box that can contain one, and only one thing

 We can store things in variables and then use them again later

on

 Each "box" has a label on the side – the variable name

 When we want to refer to a variable in our program, we use the

"label" of the "box" – i.e. our variable name

 When we said get age, we meant, get input from the user and

put it into the box labeled 'age'

 When we said display age, we meant, display the contents

of the box with the label 'age'.

get age

get age

display age

 There will also be times we want to use a fixed value in our
programs

 When we said

 display "Please enter your age"

 the text Please enter your age was a literal value rather
than a variable

 A literal value is fixed and doesn't change

 This particular literal value was a string – a text value

 We know that this was a string literal, rather than a reference to
a variable named Please enter your age because it was encased
in quotes

 (if this is still confusing, think back to the blocks:

 Note the colours – the greenish blue was a literal, the
purpleish pink a variable)

 A computer can store data in memory

 …or it can "put stuff in labeled boxes"

 To assign a value to a variable in
Banana, we use set:

 set name = "Paul"

 Note the use of the symbol =

 The left hand side of the = indicates
which variable is going to have a value
assigned

 The right hand side of the = indicates
what value is going to be put into the
variable

 You can leave the set off if you like

 age = 39

Paul

 If you assign a value to a variable, any existing value is

replaced with the new one!

1. set name = "Prince"

2. name = "Funky"

Prince

Prince

Funky

Line #1 Line #2

 Tip: Get into the habit of using
set when you use a variable for
the first time, and leaving it
off on subsequent uses. That
way, when you look back at
your pseudocode, you know
whether a given line of code is
using a new variable or an
existing one. This also matches
how things work in many
programming languages.

 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

 "Take the text Paul and put it into the variable name"

Paul

 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

 "Take a copy of the content of the
variable Paul and put it into the
variable name"

 Note that whatever was in Paul is left
unchanged! This would COPY the contents
rather than MOVE the contents of Paul

 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

A. 12
14

B. 12
bar

C. foo
bar

D. foo
14

A. B. C. D.

3%

80%

7%
10%

set foo = 12

set bar = 14

display "foo"

display bar

20

 A computer can perform arithmetic
 Most programs require the computer to perform some sort of

mathematical calculation, or formula

 To be consistent with high-level programming languages, Banana uses
the following symbols:

+ for Add - for Subtract

* for Multiply / for Divide

% for Modulo (remainder)

 When writing mathematical calculations for the computer, standard
mathematical ‘order of operations’ is assumed in Banana and applies
in most other programming languages

 We can use parentheses or brackets () to change the order of operations

 display 4+2

 Results in 6 being printed to the screen

 display 4-2

 Results in 2 being printed to the screen

 display 4*2

 Results in 8 being printed to the screen

 display 4/2

 Results in 2 being printed to the screen

 display 4%2

 Results in 0 being printed to the screen

 there is no remainder if you divide 4 by 2…

 display 5%2

 Results in 1 being printed to the screen

 …there is a remainder of 1 if you divide 5 by 2

 When we have a line of pseudocode like

 display 4*7

 we are actually saying

 "display the result of 4 times 7"

 Q: What kind of data is the result of 4 times 7?

 Is it a number? Several numbers? A string of text? An image? More

than one of these?

 In virtually all programming

languages, if you have a piece

of code that results in a number, it will "fit" anywhere a a

simple number would fit!

 display 2+2

 display 4

 The result of 2+2 is a number (i.e. 4)

 The result of 4 on its own is a number (i.e. 4!)

 Therefore, from a programming point of view, both of these are

grammatically identical! If you have a keyword or command that can

be followed by a number, it can just as readily be followed by a

calculation that would result in a number!

 Think back to the blocks:

 Think how both the number 4 and the maths block were

represented by a single block

 A single block could be clipped anywhere it would fit – even

if it contained other blocks inside it

 This is part of the art of programming – being able to

visualise different combinations of symbols as single blocks

and understanding where they can be used

1. set age = 39

2. age = age + 1

3. display age

 displays 40

 Why?

 Remember the grammar

1. set age = 39

2. age = age + 1

3. display age

 displays 40

 In line 1, the variable age is assigned the number 39

 In line 2…

 We have a calculation

 The result of this calculation is a number – i.e. 40

 This result "fits" into the line of code like any other number

 This resulting number (40) is placed into age and replaces the existing
one (39)

 In line 3, we display the (new) contents of age

39

age's current

contents (39)

plus 1
39

 Birthday

display "What is your age?"

get age

age = age + 1

display "On your birthday you will be"

display age

A. 18

B. 19

C. 1

D. 181

18 19 1
18
1

2% 0%2%

96%

display "What is your age?"

get age

age = age + 1

display "On your birthday

you will be"

display age

 Although we haven't done much of it thus

far, you can store text (strings) in your

variables

set name = "Paul"

set surname = "Neve"

 We can also add strings together:

set fullname = name+surname

 This is called concatenation

A. fullname

B. Paul

C. Neve

D. Paul Neve

E. PaulNeve

A. B. C. D. E.

0% 0%

89%

11%

0%

set name = "Paul"

set surname = "Neve"

set fullname = name+surname

display fullname

set name = "Paul"

set surname = "Neve"

set fullname = name+surname

 Often, when we're dealing with words and concatenating

them together, we don't want them to be mashed together

but we'll want a space between them

 Spaces should be considered text just like every other

symbol – just because we humans can't see them, doesn't

mean they're not there

 So we might correct the third line above with the following:

set fullname = name+" "+surname

set fullname = name + “ “ + surname

 If this is confusing, consider this alternative lines of code

set fullname = name+"abc"+surname

 How is this any different?

 name is a variable

 "abc" is a string literal

 surname is a variable

 the result is the three of them jointed together

 So, just because what's between the quotes is a space,
doesn't make any different – it's still a string literal

 Birthday, refined

display "What is your age?"

get age

age = age + 1

display "On your birthday you will be "+age

 We can concatenate numbers onto the end of a string, too

 We will often use this to make things display on a single line

 Remember the grammar mk2 (or, "not just numbers!")

 If you have a "calculation" that results in a string of text, that

piece of code can be used anywhere a string of text would "fit"

 Birthday, refined

display "What is your age?"

get age

age = age + 1

display "On your birthday you will be " + age

 We can concatenate numbers onto the end of a string, too

 We will often use this to make things display on a single line

 Remember the grammar mk2 (or, "not just numbers!")

 If you have a "calculation" that results in a string of text, that

piece of code can be used anywhere a string of text would "fit"

 Calculator

display "Enter the first number"

get num1

display "Enter the second number"

get num2

set num3 = num1 + num2

display "The answer is "+num3

36

 A computer can compare two variables and select one or two

alternate actions

 An important computer operation available to the programmer is the

ability to compare two variables and then, as a result of the

comparison, select one of two alternate actions

 To represent this operation in Banana, special keywords are used: IF,

ELSE and ENDIF

 Statements like these that can make decisions are called conditional

statements

4-37

Relational operators are the symbols used in the
condition to be evaluated in If statements:

== is equal to (the comparison operator)

!= is not the same as (not equal to)

< less than

> greater than

<= less than or equal to

>= greater than or equal to

display "Please enter the customer's age."

get age

if age >= 18

display "OK to serve alcohol."

else

display "No alcohol may be served."

endif

 You should think of the IF and ENDIF as being a single block:

 The IF statement is the start of the block

 The ENDIF statement is the end of the block

 Statements go between the IF and ENDIF

if age >= 18

display "OK to serve alcohol."

endif

 If you have an ELSE, this adds another place where

statements can go – but the IF/ENDIF combination still

represents a single block of program code:

if age >= 18

display "OK to serve …"

else

display "No alcohol … "

endif

 And similarly with IF / ELSEIF / ENDIF:

if age >= 18

display "OK to serve …"

elseif age >= 16

display "Parents can buy … "

else

display "No alcohol …"

endif

A.

B.

C.

A. B. C.

1%

96%

3%

get username

if username == "Paul"

display "Hello, master!"

endif

if username == "Bill"

display "You owe me a fiver!"

endif

if (username != "Fred")

display "You are banned!"

else

display "Welcome!"

endif

A B C

get username

if username == "Paul"

display "Hello, master!"

endif username == "Bill"

display "You owe me a fiver!"

endif username != "Fred"

display "You are banned!"

endif

display "Welcome!"

endif

get username

if username == "Paul"

display "Hello, master!"

elseif username == "Bill"

display "You owe me a fiver!"

elseif username != "Fred"

display "You are banned!"

else

display "Welcome!"

endif

A

B C

There is a significant difference between the use of an equals sign (=)
as the assignment operator and a double equals sign (==) as the
comparison operator.

As an assignment operator, the equals sign sets the value of an
expression on the right side to the variable on the left side.

As a comparison operator, the double equals sign asks the question,
“Is the value of the variable on the left side the same as the value
of the expression, number, or variable on the right side?”

 a single equals sign (=) signifies the assignment operator

 a double equals sign (==) signifies the comparison operator

 Banana will forgive you getting these wrong but in most programming
languages you will be setting sail for fail if you mix these up!

 Logical operators are used to connect simple conditions into

a more complex condition called a compound condition.

 The simple conditions each contain one relational operator.

 Using compound conditions reduces the amount of code that

must be written.

This code is

equivalent to

Get X

If X < 5

Display “OK”

EndIf

If X > 10

Display “OK”

EndIf

this code. But this code is shorter!

Get X

If X < 5 OR X > 10

Display “OK”

EndIf

 A compound condition consisting of two simple
conditions joined by an AND is true only if both simple

conditions are true. It is false if even one of the

conditions is false. The statement:

if X > 5 AND X < 10

is true only if X is 6, 7, 8, or 9. It has to be both greater

than 5 and less than 10 at the same time.

 In Banana, you can use the word AND or you can use

the symbol &&

 && is used in most other programming languages – we

recommend you get in the habit of using that

 A compound condition consisting of two simple
conditions joined by an OR is true if even one of the
simple conditions is true. It is false only if both are
false. For example:

If Response ==“Y” OR Response ==“y”

 This is true if Response is uppercase or lower case y.
For the above condition to be false, Response would
have to be something other than either ‘Y’ or ‘y’.

 You can also use the symbol || (two pipe characters –
look next to the left shift key on a British keyboard)

 Most programming languages use || so try to get in the
habit of using that in your own code

 The NOT operator flips a boolean value – so if it's true, it
makes it false; if it's false, it makes it true

NOT A < B

is true only if B is greater than or equal to A.

if X > 100 AND NOT X == Y

is true only if X is greater than 100 but not equal to the
value of Y.

 The more common symbol for NOT in most
programming languages is the exclamation mark, !

 E.g. if X > 100 AND ! X == Y

 Try to get in the habit of using this rather than the full
word NOT in your own programs, if possible..

 A NOT goes with the condition it immediately precedes:

if NOT X > 100 AND X == Y

 …will be true if X is not greater than 100, and X is equal to Y

 Contrast

if NOT (X > 100 AND X == Y)

 How do you think they would differ?

 Consider if

 X = 101 Y = 101

 X = 99 Y = 101

 X = 99 Y = 99

50

 Banana can repeat a group of actions (a loop)

 The usual loops that you've seen in your blocks exist:

 “while…endwhile"

 " repeat…until"

 "for…endfor"

 The for loop is a mainstay of virtually every programming

language

 We use a for when we know before the loop starts how many
times we need it to repeat

for count = 1 to 10

display "Programming rocks!"

endfor

 We could do this without the FOR…

 …but there would be duplicated code…

 …what about if we wanted 1000 times?!

This will print

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

 The for loop is a mainstay of virtually every programming

language

 We use a for when we know before the loop starts how many

times we need it to repeat

for count = 1 to 10

display "Programming rocks!"

endfor

counter variable

The value in this variable will change every time the loop repeats

starting value

At the start of the loop the counter variable will contain

this value

end value

The loop will end when

the counter variable

gets to this value

display "I'm going to count to 10"

for count = 1 to 10

display count

endfor

 The counter variable is a variable like any

other

 It will start at the initial value (1 in this

case) and the loop will end when it gets

to the end value (10 in this case)

This will

print

1

2

3

4

5

6

7

8

9

10

for banana = 1 to 10

display banana

endfor

 The counter variable is a variable like any

other

 It doesn't have to be called count

 It could be called whatever you like

 You should still follow the rules about sensible

variable names, however…

 …so don't call your FOR loop variables banana!

This will

print

1

2

3

4

5

6

7

8

9

10

 You can use STEP to specify how much the loop goes up by

each time

 If it's left off, it'll assume you mean increase by 1 each time

for banana = 1 to 10 step 2

display banana

endfor

 Why no 10?

This will

print

1

3

5

7

9

 Remember to visualise the blocks…

for banana = to step

display banana

endfor

display "Enter a number…"

get times

for count = 1 to times

display count

endfor

 What would this program do?

 "Remember your grammar"

 "Visualise your blocks"

display "Enter a number…"

get times

for count = times to times*2

display count

endfor

 What would this pseudocode do?

 "Remember your grammar"

repeat

display "Enter 0 to stop"

get num

display "You typed "

display num

until num == 0

 As was the case with the IF statement, the REPEAT/UNTIL

construct represents a single block of code

 Try to visualise the blocks when you see text-based code

 e.g. the comparison in the final line is a single block

while num != 0

display "Enter 0 to stop"

get num

display "You typed "

display num

endwhile

 Again: Visualise the blocks / Remember the grammar!

 What's the difference?

 How about now?

 Define a function with FUNCTION / ENDFUNCTION

function greetUser

display "Hello there!"

display "Welcome aboard!"

endfunction

 Once again, the boundaries of the code block are defined by
the word function and endfunction

 Everything in between is the function body

 Call a function with the keyword call

function func1

display "I like the number 3"

endfunction

function func2

display "I like the number 1"

endfunction

function func3

display "I like the number 2"

endfunction

call func3

call func2

call func1 What would be displayed?

 Specify that your function returns a value using (surprisingly
enough) the return keyword

function faveNumber

return 7

endfunction

 Then, to do something with this returned value, use
resultof:

set num = resultof faveNumber

function faveNumber

return 7

endfunction

set num = resultof faveNumber

 Remember the blocks…

 A reference to a function that returns a value can be used anywhere

that value would fit

 If you want a function to take parameters, specify them in

brackets after the function's name

function addNumbers(numOne,numTwo)

set result = numOne + numTwo

display result

endfunction

then, for example, to call the function

call addNumbers(4,3)

 If you want a function to take parameters, specify them in

brackets after the function's name

function addNumbers(numOne , numTwo)

set result = numOne + numTwo

display result

endfunction

then, for example, to call the function

call addNumbers(4 , 3)

function addNumbers(numOne , numTwo)

set result = numOne + numTwo

return result

endfunction

 Use both resultof and the bracketed parameter names:

set num = resultof addNumbers(10,20)

 The following people, please remain at the end:

 K1411737

 K1453038

 K1514279

 K1526857

 Banana is a pseudocode-like programming language

 So far we've been constructing blocks which get translated into
Banana

 Pseudocode is NOT a programming language - just a convention
that programmers use and a way of planning out programming
solutions before getting involved with a real programming
language

 There is no single standard or "correct" version of pseudocode - if
you Google around, you will find lots of (conflicting) ways that
people write pseudocode

 Pseudocode is more strict than natural language, but less strict
than most programming languages

 Banana is designed to be like pseudocode, but you do need to use
the correct keywords in the correct place

 But, if you know Banana, you'll be able to read and write
pseudocode

 All of the blocks you've used so far have Banana equivalents

 Some of them map quite nearly onto a single line of code

 Others have keywords that correspond to the start and the

end of a block

 You can put other statements between these start and end

statements just as you put blocks inside other blocks

 A crucial skill of programming is being able to visulise the

blocks of your program

 If a combination of symbols, numbers and letters evaluate to

a single value (an expression) then that combination will fit

anywhere the single value would fit

 For example:

 2+2+4+10+14+1 is 33

 so 2+2+4+10+14+1 fits anywhere 33 would fit in a program!

 Read the text and try to see the blocks – if you can do that,

you'll do OK...! :-)

