


 We have written programs to navigate Carol around a maze

 These were visual problems

 We have written programs that interact with the user to get 

input and calculate results and produce output

 These were abstract problems

 Until now we have been using our block based system of 

programming

 This has helped you get a head start and concentrate on 

problem solving – but now it's time to look at more 

conventional approaches to programming

 Today, and in this week's workshop, we'll be discarding the 

blocks and you'll be writing the text based code to solve your 

problems by hand



 You've actually been creating text-based code in all of our 

activities so far…

 The block system generates text based code as you drag, 

drop and move blocks about the canvas

 The text based code is what NoobLab runs - not the blocks



 This text based code is a language

of my own devising called Banana

 Why is it called Banana? Well, when

I teach programming people often

ask me what to call things in their

code, e.g.

 Q: “What should I call my variable?”

 To which I usually say

 A: “You can call it whatever you like… 

you can call it banana if you like!”

 Banana is designed to be like

pseudocode



 Pseudocode is simpler than natural language, which helps 

make it less ambiguous

 It is half-way between natural language and very logically 

precise "real" computer languages

 There is no single "standard" of pseudocode – if you Google 

for examples you'll find all kinds of different things, e.g.

 some use PRINT, some use DISPLAY

 some use SET for variables, others use DEFINE

 This works because pseudocode is NOT a programming 

language – it's just a technique for helping you design and 

plan your programs before you write them in a real language

 So, pseudocode is not something you would type into a 

computer and run – you would just use it to map things out 

in advance



 Banana is like pseudocode – it uses many of the same 

principles and keywords

 If you can read and write Banana, you'll be able to read and 

write pseudocode

 We distinguish between Banana and pseudocode because

 Banana code can be run on a computer – pseudocode is not

 There are rules and standards for Banana code – there are none 

for pseudocode



 Displaying information is one of the six basic operations that 

a computer can perform

 We do this in Banana operation with DISPLAY

 Use this to print something to the console, e.g.

display "Please enter your age"

get age

display age

 (What's the difference between the two uses of display here? 

What will each of them print to the console?)



 The ability for a computer to receive information – either 

from a human being or some other source – is another basic 

operation

 In Banana, we can use the verb get:

display "Please enter your age"

get age

display age



 In the previous example, age was a variable

 Reminder:

 A variable is like a box that can contain one, and only one thing

 We can store things in variables and then use them again later 

on

 Each "box" has a label on the side – the variable name

 When we want to refer to a variable in our program, we use the 

"label" of the "box" – i.e. our variable name

 When we said get age, we meant, get input from the user and 

put it into the box labeled 'age'

 When we said display age, we meant, display the contents 

of the box with the label 'age'.



get age



get age

display age



 There will also be times we want to use a fixed value in our 
programs

 When we said

 display "Please enter your age"

 the text Please enter your age was a literal value rather 
than a variable

 A literal value is fixed and doesn't change

 This particular literal value was a string – a text value

 We know that this was a string literal, rather than a reference to 
a variable named Please enter your age because it was encased 
in quotes

 (if this is still confusing, think back to the blocks:

 Note the colours – the greenish blue was a literal, the 
purpleish pink a variable)



 A computer can store data in memory

 …or it can "put stuff in labeled boxes"

 To assign a value to a variable in 
Banana, we use set:

 set name = "Paul"

 Note the use of the symbol =

 The left hand side of the = indicates 
which variable is going to have a value 
assigned

 The right hand side of the = indicates 
what value is going to be put into the 
variable

 You can leave the set off if you like

 age = 39

Paul



 If you assign a value to a variable, any existing value is 

replaced with the new one!

1. set name = "Prince"

2. name = "Funky"

Prince

Prince

Funky

Line #1 Line #2

 Tip: Get into the habit of using 
set when you use a variable for 
the first time, and leaving it 
off on subsequent uses. That 
way, when you look back at 
your pseudocode, you know 
whether a given line of code is 
using a new variable or an 
existing one. This also matches 
how things work in many 
programming languages.



 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!



 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

 "Take the text Paul and put it into the variable name"

Paul



 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!

 "Take a copy of the content of the 
variable Paul and put it into the 
variable name"

 Note that whatever was in Paul is left 
unchanged! This would COPY the contents 
rather than MOVE the contents of Paul



 What's the difference between

 set name = "Paul"

 set name = Paul

 Both are potentially valid!



A. 12
14

B. 12
bar

C. foo
bar

D. foo
14

A. B. C. D.

3%

80%

7%
10%

set foo = 12

set bar = 14

display "foo"

display bar



20

 A computer can perform arithmetic
 Most programs require the computer to perform some sort of 

mathematical calculation, or formula

 To be consistent with high-level programming languages, Banana uses 
the following symbols:

+ for Add - for Subtract

* for Multiply / for Divide

% for Modulo (remainder)

 When writing mathematical calculations for the computer, standard 
mathematical ‘order of operations’ is assumed in Banana and applies 
in most other programming languages

 We can use parentheses or brackets ( ) to change the order of operations



 display 4+2

 Results in 6 being printed to the screen

 display 4-2

 Results in 2 being printed to the screen

 display 4*2

 Results in 8 being printed to the screen

 display 4/2

 Results in 2 being printed to the screen

 display 4%2

 Results in 0 being printed to the screen

 there is no remainder if you divide 4 by 2…

 display 5%2

 Results in 1 being printed to the screen

 …there is a remainder of 1 if you divide 5 by 2



 When we have a line of pseudocode like

 display 4*7

 we are actually saying 

 "display the result of 4 times 7"

 Q: What kind of data is the result of 4 times 7?

 Is it a number? Several numbers? A string of text? An image? More 

than one of these?



 In virtually all programming 

languages, if you have a piece 

of code that results in a number, it will "fit" anywhere a a 

simple number would fit!

 display 2+2

 display 4

 The result of 2+2 is a number (i.e. 4)

 The result of 4 on its own is a number (i.e. 4!)

 Therefore, from a programming point of view, both of these are 

grammatically identical! If you have a keyword or command that can 

be followed by a number, it can just as readily be followed by a 

calculation that would result in a number!



 Think back to the blocks:

 Think how both the number 4 and the maths block were 

represented by a single block

 A single block could be clipped anywhere it would fit – even 

if it contained other blocks inside it

 This is part of the art of programming – being able to 

visualise different combinations of symbols as single blocks 

and understanding where they can be used



1. set age = 39

2. age = age + 1

3. display age

 displays 40

 Why?

 Remember the grammar 



1. set age = 39

2. age = age + 1

3. display age

 displays 40

 In line 1, the variable age is assigned the number 39

 In line 2…

 We have a calculation

 The result of this calculation is a number – i.e. 40

 This result "fits" into the line of code like any other number

 This resulting number (40) is placed into age and replaces the existing 
one (39)

 In line 3, we display the (new) contents of age

39

age's current

contents (39)

plus 1
39



 Birthday

display "What is your age?"

get age

age = age + 1

display "On your birthday you will be"

display age



A. 18

B. 19

C. 1

D. 181

18 19 1
18
1

2% 0%2%

96%

display "What is your age?"

get age

age = age + 1

display "On your birthday 

you will be"

display age



 Although we haven't done much of it thus 

far, you can store text (strings) in your 

variables

set name = "Paul"

set surname = "Neve"

 We can also add strings together:

set fullname = name+surname

 This is called concatenation



A. fullname

B. Paul

C. Neve

D. Paul Neve

E. PaulNeve

A. B. C. D. E.

0% 0%

89%

11%

0%

set name = "Paul"

set surname = "Neve"

set fullname = name+surname

display fullname



set name = "Paul"

set surname = "Neve"

set fullname = name+surname

 Often, when we're dealing with words and concatenating 

them together, we don't want them to be mashed together 

but we'll want a space between them

 Spaces should be considered text just like every other 

symbol – just because we humans can't see them, doesn't 

mean they're not there

 So we might correct the third line above with the following:

set fullname = name+" "+surname



set fullname = name + “ “ + surname

 If this is confusing, consider this alternative lines of code

set fullname = name+"abc"+surname

 How is this any different?

 name is a variable

 "abc" is a string literal

 surname is a variable

 the result is the three of them jointed together

 So, just because what's between the quotes is a space, 
doesn't make any different – it's still a string literal



 Birthday, refined

display "What is your age?"

get age

age = age + 1

display "On your birthday you will be "+age

 We can concatenate numbers onto the end of a string, too

 We will often use this to make things display on a single line

 Remember the grammar mk2 (or, "not just numbers!")

 If you have a "calculation" that results in a string of text, that 

piece of code can be used anywhere a string of text would "fit"



 Birthday, refined

display "What is your age?"

get age

age = age + 1

display  "On your birthday you will be " + age

 We can concatenate numbers onto the end of a string, too

 We will often use this to make things display on a single line

 Remember the grammar mk2 (or, "not just numbers!")

 If you have a "calculation" that results in a string of text, that 

piece of code can be used anywhere a string of text would "fit"



 Calculator 

display "Enter the first number"

get num1

display "Enter the second number"

get num2

set num3 = num1 + num2

display "The answer is "+num3



36

 A computer can compare two variables and select one or two 

alternate actions

 An important computer operation available to the programmer is the 

ability to compare two variables and then, as a result of the 

comparison, select one of two alternate actions

 To represent this operation in Banana, special keywords are used: IF, 

ELSE and ENDIF

 Statements like these that can make decisions are called conditional 

statements



4-37

Relational operators are the symbols used in the 
condition to be evaluated in If statements:

== is equal to (the comparison operator)

!= is not the same as (not equal to)

< less than

> greater than

<= less than or equal to

>= greater than or equal to



display "Please enter the customer's age."

get age

if age >= 18

display "OK to serve alcohol."

else

display "No alcohol may be served."

endif



 You should think of the IF and ENDIF as being a single block:

 The IF statement is the start of the block

 The ENDIF statement is the end of the block

 Statements go between the IF and ENDIF

if age >= 18

display "OK to serve alcohol."

endif



 If you have an ELSE, this adds another place where 

statements can go – but the IF/ENDIF combination still 

represents a single block of program code:

if age >= 18

display "OK to serve …"

else

display "No alcohol … "

endif



 And similarly with IF / ELSEIF / ENDIF:

if age >= 18

display "OK to serve …"

elseif age >= 16

display "Parents can buy … "

else

display "No alcohol …"

endif



A.

B.

C.

A. B. C.

1%

96%

3%

get username

if username == "Paul"

display "Hello, master!"

endif

if username == "Bill"

display "You owe me a fiver!"

endif

if (username != "Fred")

display "You are banned!"

else

display "Welcome!" 

endif

A B C

get username

if username == "Paul"

display "Hello, master!"

endif username == "Bill"

display "You owe me a fiver!"

endif username != "Fred"

display "You are banned!"

endif

display "Welcome!" 

endif

get username

if username == "Paul"

display "Hello, master!"

elseif username == "Bill"

display "You owe me a fiver!"

elseif username != "Fred"

display "You are banned!"

else

display "Welcome!" 

endif

A

B C



There is a significant difference between the use of an equals sign (=) 
as the assignment operator and a double equals sign (==) as the 
comparison operator. 

As an assignment operator, the equals sign sets the value of an 
expression on the right side to the variable on the left side.

As a comparison operator, the double equals sign asks the question, 
“Is the value of the variable on the left side the same as the value 
of the expression, number, or variable on the right side?”

 a single equals sign (=) signifies the assignment operator

 a double equals sign (==) signifies the comparison operator

 Banana will forgive you getting these wrong but in most programming 
languages you will be setting sail for fail if you mix these up! 



 Logical operators are used to connect simple conditions into 

a more complex condition called a compound condition.

 The simple conditions each contain one relational operator.

 Using compound conditions reduces the amount of code that 

must be written.



This code is 

equivalent to   

Get X

If  X < 5

Display “OK”

EndIf

If X > 10

Display “OK”

EndIf

this code. But this code is shorter!

Get X

If X < 5 OR X > 10

Display “OK”

EndIf



 A compound condition consisting of two simple 
conditions joined by an AND is true only if both simple 

conditions are true. It is false if even one of the 

conditions is false. The statement: 

if X > 5 AND X < 10

is true only if X is 6, 7, 8, or 9. It has to be both greater 

than 5 and less than 10 at the same time. 

 In Banana, you can use the word AND or you can use 

the symbol &&

 && is used in most other programming languages – we 

recommend you get in the habit of using that



 A compound condition consisting of two simple 
conditions joined by an OR is true if even one of the 
simple conditions is true. It is false only if both are 
false. For example: 

If Response ==“Y” OR Response ==“y”

 This is true if Response is uppercase or lower case y. 
For the above condition to be false, Response would 
have to be something other than either ‘Y’ or ‘y’. 

 You can also use the symbol || (two pipe characters –
look next to the left shift key on a British keyboard)

 Most programming languages use || so try to get in the 
habit of using that in your own code



 The NOT operator flips a boolean value – so if it's true, it 
makes it false; if it's false, it makes it true

NOT A < B

is true only if B is greater than or equal to A.

if X > 100 AND NOT X == Y

is true only if X is greater than 100 but not equal to the 
value of Y.

 The more common symbol for NOT in most 
programming languages is the exclamation mark, !

 E.g. if X > 100 AND ! X == Y

 Try to get in the habit of using this rather than the full 
word NOT in your own programs, if possible..



 A NOT goes with the condition it immediately precedes:

if NOT X > 100 AND X == Y

 …will be true if X is not greater than 100, and X is equal to Y

 Contrast

if NOT (X > 100 AND X == Y)

 How do you think they would differ?

 Consider if 

 X = 101 Y = 101

 X = 99 Y = 101

 X = 99 Y = 99



50

 Banana can repeat a group of actions (a loop)

 The usual loops that you've seen in your blocks exist:

 “while…endwhile" 

 " repeat…until" 

 "for…endfor"



 The for loop is a mainstay of virtually every programming 

language

 We use a for when we know before the loop starts how many 
times we need it to repeat

for count = 1 to 10

display "Programming rocks!"

endfor

 We could do this without the FOR…

 …but there would be duplicated code…

 …what about if we wanted 1000 times?!

This will print

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!

Programming rocks!



 The for loop is a mainstay of virtually every programming 

language

 We use a for when we know before the loop starts how many 

times we need it to repeat

for count = 1 to 10

display "Programming rocks!"

endfor

counter variable

The value in this variable will change every time the loop repeats

starting value

At the start of the loop the counter variable will contain 

this value

end value

The loop will end when 

the counter variable 

gets to this value



display "I'm going to count to 10"

for count = 1 to 10

display count

endfor

 The counter variable is a variable like any 

other

 It will start at the initial value (1 in this 

case) and the loop will end when it gets 

to the end value (10 in this case)

This will 

print

1

2

3

4

5

6

7

8

9

10



for banana = 1 to 10

display banana

endfor

 The counter variable is a variable like any 

other

 It doesn't have to be called count

 It could be called whatever you like

 You should still follow the rules about sensible 

variable names, however…

 …so don't call your FOR loop variables banana! 

This will 

print

1

2

3

4

5

6

7

8

9

10



 You can use STEP to specify how much the loop goes up by 

each time

 If it's left off, it'll assume you mean increase by 1 each time

for banana = 1 to 10 step 2

display banana

endfor

 Why no 10?

This will 

print

1

3

5

7

9



 Remember to visualise the blocks…

for banana = to      step 

display banana

endfor



display "Enter a number…"

get times

for count = 1 to times

display count

endfor

 What would this program do?

 "Remember your grammar"

 "Visualise your blocks"



display "Enter a number…"

get times

for count = times to times*2

display count

endfor

 What would this pseudocode do?

 "Remember your grammar"



repeat

display "Enter 0 to stop"

get num

display "You typed "

display num

until num == 0

 As was the case with the IF statement, the REPEAT/UNTIL 

construct represents a single block of code

 Try to visualise the blocks when you see text-based code

 e.g. the comparison in the final line is a single block



while num != 0

display "Enter 0 to stop"

get num

display "You typed "

display num

endwhile

 Again: Visualise the blocks / Remember the grammar!



 What's the difference?



 How about now?



 Define a function with FUNCTION / ENDFUNCTION

function greetUser

display "Hello there!"

display "Welcome aboard!"

endfunction

 Once again, the boundaries of the code block are defined by 
the word function and endfunction

 Everything in between is the function body

 Call a function with the keyword call



function func1

display "I like the number 3"

endfunction

function func2

display "I like the number 1"

endfunction

function func3

display "I like the number 2"

endfunction

call func3

call func2

call func1 What would be displayed?



 Specify that your function returns a value using (surprisingly 
enough) the return keyword

function faveNumber

return 7

endfunction

 Then, to do something with this returned value, use 
resultof:

set num = resultof faveNumber



function faveNumber

return 7

endfunction

set num = resultof faveNumber

 Remember the blocks…

 A reference to a function that returns a value can be used anywhere 

that value would fit



 If you want a function to take parameters, specify them in 

brackets after the function's name

function addNumbers(numOne,numTwo)

set result = numOne + numTwo

display result

endfunction

then, for example, to call the function

call addNumbers(4,3)



 If you want a function to take parameters, specify them in 

brackets after the function's name

function addNumbers( numOne , numTwo )

set result = numOne + numTwo

display result

endfunction

then, for example, to call the function

call addNumbers( 4 , 3 )



function addNumbers( numOne , numTwo )

set result = numOne + numTwo

return result

endfunction

 Use both resultof and the bracketed parameter names:

set num = resultof addNumbers(10,20)



 The following people, please remain at the end:

 K1411737

 K1453038

 K1514279

 K1526857



 Banana is a pseudocode-like programming language

 So far we've been constructing blocks which get translated into 
Banana

 Pseudocode is NOT a programming language - just a convention 
that programmers use and a way of planning out programming 
solutions before getting involved with a real programming 
language

 There is no single standard or "correct" version of pseudocode - if 
you Google around, you will find lots of (conflicting) ways that 
people write pseudocode

 Pseudocode is more strict than natural language, but less strict 
than most programming languages

 Banana is designed to be like pseudocode, but you do need to use 
the correct keywords in the correct place

 But, if you know Banana, you'll be able to read and write 
pseudocode



 All of the blocks you've used so far have Banana equivalents

 Some of them map quite nearly onto a single line of code

 Others have keywords that correspond to the start and the 

end of a block

 You can put other statements between these start and end 

statements just as you put blocks inside other blocks



 A crucial skill of programming is being able to visulise the 

blocks of your program

 If a combination of symbols, numbers and letters evaluate to 

a single value (an expression) then that combination will fit 

anywhere the single value would fit

 For example: 

 2+2+4+10+14+1 is 33

 so 2+2+4+10+14+1 fits anywhere 33 would fit in a program!

 Read the text and try to see the blocks – if you can do that, 

you'll do OK...! :-)


