

 Remember: Java is NOT Javascript!

 Remember: Javascript is NOT Java!

 There are similarities…

 There are differences…

 You will need to put aside some of what you've become

accustomed to in Javascript and get your Java habits back

 Key things to remember about Java given that you're coming

from Javascript and you've probably forgotten some

important differences…)

 Java is strongly typed

 This means that you MUST specify the type of your variable when you

declare it:

 Java Javascript

String name = "Paul"; var name = "Paul";

int age = 21; var age = 21;

double nfh = 99.999; var nfh = 99.999;

 You can ONLY declare the variable once (unlike Javascript

which lets you get away with re-declaring variables)

 This means that you MUST specify the type of your variable when

you declare it:

 Java Javascript

String name = "Paul"; var name = "Paul";

System.out.println(name); console.log(name);

name = "Fred"; name = "fred";

String name = "Paul"; var name = "Paul";

System.out.println(name); console.log(name);

String name = "Fred"; var name = "fred";

 You can ONLY declare the variable once (unlike Javascript

which lets you get away with re-declaring variables)

 This means that you MUST specify the type of your variable when

you declare it:

 Java Javascript

String name = "Paul"; var name = "Paul";

System.out.println(name); console.log(name);

name = "Fred"; name = "fred";

String name = "Paul"; var name = "Paul";

System.out.println(name); console.log(name);

String name = "Fred"; var name = "fred";

Would NOT compile

Is incorrect,

but would

run

both correct

 Use System.out.println to print text on the console

 Create a Scanner object and then call nextLine or nextInt to

get input from the console

Java Javascript

Scanner keys = new Scanner();

System.out.println("Type text");

String text = keys.nextLine();

System.out.println(text);

System.out.println("Type a number");

String num = keys.nextInt();

System.out.println(num);

var text = prompt("Type text");

console.log(text);

var num = prompt("Type a number");

console.log(num);

 Use System.out.println to print text on the console

 Create a Scanner object and then call nextLine or nextInt to

get input from the console

Java Javascript

Scanner keys = new Scanner();

System.out.println("Type text");

String text = keys.nextLine();

System.out.println(text);

System.out.println("Type a number");

String num = keys.nextInt();

System.out.println(num);

var text = prompt("Type text");

console.log(text);

var num = prompt("Type a number");

console.log(num);

You only need to declare the Scanner object ONCE!

Assign it to a variable (in this case, we used a variable called keys)
and then you can refer to the variable and call nextLine and/or
nextInt as many times as you need!

 Java is an object oriented language

 (This unit will focus predominantly on that characteristic of Java)

 EVERYTHING in Java is a class

 Ideally, a class should describe a real world thing

 e.g. student, ball, house, garden, pet

 A class has attributes and methods

 Attributes describe what distinguishes individual examples of

a class from others ones

 What makes one ball different from another?

 What makes one pet different from another?

 Methods are things that the class can do

 What can a ball do?

 What can a pet do?

 The code that defines a class does NOT refer to any specific
instance of a class or object

 Consider if I defined a student in English:

 A student is an individual who attends a university. They have a
name, address, gender and ID number. They attend a number
of different modules.

 and consider a specific student:

 Fred Smith attends Kingston University and his K-number is
K1469123. He lives in Surbiton, and he studies the modules
[Programming 1, IT Toolbox, System Environments and
Neutron Bomb Juggling.]

 The attributes are what distinguish Fred Smith from (say)
Jill Jones

 The definition (in green) has nothing specific to do with Fred
Smith. It just lays down the rules for students in general

 Classes can have relationships with other classes:

 Consider if I defined a student in English:

 A student is an individual who attends a university. They have a

name, address, gender and ID number. They attend a number

of different modules.

 A module itself is another class, e.g.

 A module has a name, a coursework and an exam

 Classes can have relationships with other classes:

 Consider if I defined a student in English:

 A student is an individual who attends a university. They have a

name, address, gender and ID number. They attend a number

of different modules

 A module itself is another class, e.g.

 A module has a name, a coursework and an exam

student

+id : String

+name : String

+address: String

+gender : boolean

module

+name : String

+coursework : String

+exam : String

 Defining the classes:

public class Student

{

public String id;

public String name;

public String address;

public String gender;

// what about modules?

}

 Defining the class:

public class Student

{

public String id;

public String name;

public String address;

public String gender;

public Module[] modules;

}

public class Module

{

public String name;

public String coursework;

public String exam;

}

 Remember that when we define a class, we are not giving

any details about any specific instance of a class

 When we define Student, we are not giving any details of

(for example) Jack Smith:

public class Student

{

public String id;

public String name;

public String address;

public String gender;

public Module[] modules;

}

Do you see any reference to

an individual student

here?!

If what you are trying to do

refers to a specific

individual, it does NOT go in

the class!

 The methods of a class specify what a class can do

 Let's switch to "ball" as our example – it's a bit less abstract

 A ball has a diameter and a colour (attributes; things that

distinguish one ball from another)

 A ball can bounce and roll (methods; things that objects of

this class can do)

 A Java class to define a ball might look like this

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boinged "+this.diameter*2+" high");

}

public void roll()

{

System.out.println("Whee");

}

}

 If we want to create a single individual
instance of a class, we use the new command

 This uses the class definition to create a new, individual,
instance of that class

 This will have all the attributes and methods from the class

 …although we'll need to set the attributes for each new instance

 Methods might make use of the attributes

 This means that when the method is called, the result can be
instance-specific

Ball tennisBall = new Ball();

tennisBall.diameter = 6.35;

tennisBall.colour = "green";

tennisBall.bounce();

Ball golfBall = new Ball();

golfBall.diameter = 2.65;

golfBall.colour = "white";

golfBall.bounce();

 What would the output be?

public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boinged "+this.diameter*2+" high");

}

public void roll()

{

System.out.println("Whee");

}

}

Ball tennisBall = new Ball();

tennisBall.diameter = 6.35;

tennisBall.colour = "green";

tennisBall.bounce();

Ball golfBall = new Ball();

golfBall.diameter = 2.65;

golfBall.colour = "white";

golfBall.bounce();

1. Take Exam

2. Fail Programming 1

3. Enrol on Module

4. Graduate Student

5. Assign Tutor to

Workshop

6. Log attendance

1. 2. 3. 4. 5. 6.

40%

20%

0%

20%20%

0%

1. public Course course;

2. public course Course;

3. public String course;

4. public course String;

5. public Student course;

6. public Course student;

7. public course;

1. 2. 3. 4. 5. 6. 7.

100%

0% 0% 0%0%0%0%

Student

+name : String

+homeAddress : String

+idNumber : String

Course

+name : String

+level : int

+course

1

 So… Java programs are a collection of related classes

 There might be dozens of different class files involved

 When you press that "run" button, the program has to start

somewhere

 That somewhere is the main method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

24

Main Method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

25

Variable declaration

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

26

Object creation

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

27

Assigning a new
object to a variable

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

28

Setting an attribute

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

29

 A "main" class
public class Mainv

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

30

Accessing an attribute

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

what's your

colour?

31

Calling a method

 The ball class
public class Ball

{

public double diameter;

public String colour;

public void bounce()

{

System.out.println("Boing");

}

public void roll()

{

System.out.println("Whee");

}

}

 A "main" class
public class Main

{

public static void main (String[] args)

{

Ball tennisBall = new Ball();

tennisBall.diameter = 6.5;

tennisBall.colour = "green";

Ball cricketBall = new Ball();

cricketBall.diameter = 9;

cricketBall.colour = "red";

System.out.println("A cricket ball is");

System.out.println(cricketBall.colour);

tennisBall.roll();

}

}

 Java is OBJECT ORIENTED

 That means that everything has to be expressed in terms of

classes that (might) relate to each other

 Classes have attributes and methods

 Somewhere in your project there will be a class that has a main

method

 This is where your program starts

 The main method will create instances of your classes, set their

attributes, call their methods

 The act of creating instances of classes, calling methods, etc

may well create new instances of classes…

 This merry dance of different classes IS the average Java

program!

 Java is STRONGLY TYPED

 Every variable MUST be declared when it is first used

 Every variable MUST has its data type specified when it is

declared

 You (usually) cannot mix and match data types

 If you break these rules your project will not compile

 Don't forget that methods can have

parameters and return values

 (these work exactly like those in Javascript functions… so

shouldn't be too much of a problem for you by now…!)

 Classes can also have a special method called a constructor

 A constructor is called whenever an instance of a class is created

 Constructors are often used to "set up" a new instance of a class,

populate attributes with default values, etc.

 Up until now, all of our attributes in our classes have been
public

 This is not ideal practice

35

 The ball class
public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height ;

}

}

 public means an

attribute can be

directly accessed from

any other class

 But what about if

invalid values are set?

36

37

public class Main

{

public static void main(String[] args)

{

Ball oddBall = new Ball();

oddBall.diameter = -10;

double bounced = oddBall.bounce();

}

}

public class Ball

{

public double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

 Will bounced contain a meaningful value with respect to

the real world object our class is supposed to represent?

 It is considered best practice to make ALL attributes of a

class private, not public

 This means that they are only visible and modifiable from

within the class itself…

38

39

public class Main

{

public static void main(String[] args)

{

Ball oddBall = new Ball();

oddBall.diameter = -10;

double bounced = oddBall.bounce();

}

}

public class Ball

{

private double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

 This is called setting the attributes visibility

 …but now the Main class won't compile…

40

public class Main

{

public static void main(String[] args)

{

Ball oddBall = new Ball();

oddBall.diameter = -10;

double bounced = oddBall.bounce();

}

}

public class Ball

{

private double diameter;

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

 …we can no longer set the diameter from outside the class Ball, because
it is private

 So.. if best practice is to make attributes in our class private, how on
earth do we get and set them?!

 We add a setter method so we can set the value of a private

attribute

 The setter method takes a parameter, and the value of this

parameter is assigned to the attribute

 We add a getter method so we can retrieve the value of a

private attribute

 The getter method will return the current value of the attribute

41

42

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.setDiameter(6.5);

double bounced = tennisBall.bounce();

double tbd = tennisBall.getDiameter();

System.out.println("Diameter is "+tbd);

System.out.println("Bounced "+bounced);

}

}

public class Ball

{

private double diameter;

public void setDiameter(double d)

{

this.diameter = d;

}

public double getDiameter()

{

return this.diameter;

}

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

43

public class Main

{

public static void main(String[] args)

{

Ball tennisBall = new Ball();

tennisBall.setDiameter(6.5);

double bounced = tennisBall.bounce();

double tbd = tennisBall.getDiameter();

System.out.println("Diameter is "+tbd);

System.out.println("Bounced "+bounced);

}

}

public class Ball

{

private double diameter ;

public void setDiameter(double d)

{

this.diameter = d;

}

public double getDiameter()

{

return this.diameter ;

}

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

44

public class Main

{

public static void main(String[] args)

{

Ball oddBall = new Ball();

oddBall.setDiameter(-10);

double bounced = oddBall.bounce();

}

}

public class Ball

{

public double diameter;

public void setDiameter(double d)

{

this.diameter = d;

}

// getter left off for space

public double bounce()

{

double height = this.diameter * 2;

return height;

}

}

 …why not just make things public across the board and save

all this effort?

 what about our oddBall instance of Ball?

 We can add validation into
our setters (and, potentially,
our getters)

 We can put the logic, the
controls for what is allowed
into the attributes of a class
in the class itself

 Think of it as a protective
barrier between your class's
attributes and everything else

 Things outside the class can
thus not break the "rules" of
what's allowed in the
attributes of the class

45

public class Ball

{

public double diameter;

public void setDiameter(double d)

{

if (d < 0)

{

this.diameter = 10; // default

}

else

{

this.diameter = d;

}

}

// getter and bounce left off

// for space

}

 The usual convention when writing setters is to use the same
name for the parameter as the attribute:

public void setDiameter(int diameter)

{

this.diameter = diameter;

}

 The usual convention when writing setters is to use the same
name for the parameter as the attribute:

public void setDiameter(int diameter)

{

this.diameter = diameter ;

}

 The use of the this keyword explicitly refers to the
attribute of the class, rather than the parameter which is
only local to this setter method

 So in this case, using this means that there is no clash
between the identically named variables

attribute

parameter

 Up until now, all of our classes have been in the same

package

 This is not best practice!

 It is recommended that you put related classes in the same

package

 You can then use a third visibility modified, protected to

specify that attributes and/or methods are available only to

other classes in the same package

 (…although protected is used much less often than public and

private…)

 Specify the package of a class by adding a like of code like

the following at the top of your class

 package com.mycompany.mypackage;

 Usually, the convention is to use your organisation's domain

name backwards, e.g.

 uk.ac.kingston

 com.paulneve

 uk.co.google

then append your package name, e.g.

 uk.ac.kingston.model

 If you want to use a class from a different package than the

current class you need to import it

 Use the import statement at the top of the class (under any

package declaration) to import an external class

 You may have used import before – can anyone tell me what

for?

 When we use a scanner, we have to import it from the

package java.util

 java.util is a package that comes with Java itself

 it contains a variety of classes and utilities – including the

Scanner class

 When we use a scanner, we have to import it from the

package java.util

 java.util is a package that comes with Java itself

 it contains a variety of classes and utilities – including the

Scanner class

importing a class

from another package

specifying the

package of the

current class

 When you have a class in a package, you are also creating a

directory structure

 If you have a class that specifies a package name of

uk.ac.kingston.paul, then it must be in the directory

 uk/ac/kingston/paul

 If you were building a Java application from scratch, you

would need to create these directories (many of which might

be empty)

 Most integrated development environments (IDEs), including

NoobLab, will do this for you

 Try creating a multiclass project, put your classes in

packages, download your project from NoobLab as a ZIP,

then unzip the ZIP and look at the directories…

 If you have a class in a package, and you want to use it

somewhere else, you MUST import it

 The only exception is if the current class is in the same

package as the destination class

 For example, in the demo you'll see now during the lecture:

 Dog is in the same package as Cat.

 You can use Dog within Cat and vice-versa without importing

 You cannot use either Dog or Cat in the Main class without

importing them

 Put things that are related together, e.g.

 if you have a Dog, Cat and Budgie then perhaps they might go in

a pets package

 if you have classes that contain general utilities then perhaps

they should go in a utils package

 if you have a bunch of classes responsible for your data model,

others that handle the control functions of your application, and

others that handle what the end-user sees or views, perhaps you

might have model, view and controller packages

1. The parameter in the method
signature is incorrect – it should
be level not lev

2. The return type in the method
signature is incorrect – it should
return an int not a void

3. The lines where level is being
set are incorrect

4. Option 2, plus also you will
need a line at the end of the
method to return what level
is being set to

5. Trick question – level will get
set just fine

6. Some other reason or Paul has
cocked up the slide!

1. 2. 3. 4. 5. 6.

17% 17% 17%17%17%17%

public class Player

{

private String name;

private int level;

private String game;

(all getters and setters for name

and game are assumed, and the

getter for level is also assumed)

public void setLevel(int lev)

{

if (game.equalsIgnoreCase("golf"))

{

double level = 10;

}

else

{

double level = lev;

}

}

}

1. You should change the double type
to an int

2. You should remove the data type
entirely

3. You should remove the data type
and append this. to the attribute
name

4. Both option 2 and 3 would work in
this particular case, but you should
really do 2 from a best practice
perspective

5. Both option 2 and 3 would work in
this particular case, but you should
really do 3 from a best practice
perspective

6. Options 1, 2 and 3 would all work

7. Something else or Paul has cocked
up the slide!

1. 2. 3. 4. 5. 6. 7.

14% 14% 14% 14%14%14%14%

public class Player

{

private String name;

private int level;

private String game;

(all getters and setters for name

and game are assumed, and the

getter for level is also assumed)

public void setLevel(int lev)

{

if (game.equalsIgnoreCase("golf"))

{

double level = 10;

}

else

{

double level = lev;

}

}

}

1. You should change the double type
to an int

2. You should remove the data type
entirely

3. You should remove the data type
and append this. to the attribute
name

4. Both option 2 and 3 would work in
this particular case, but you should
really do 2 from a best practice
perspective

5. Both option 2 and 3 would work in
this particular case, but you should
really do 3 from a best practice
perspective

6. Options 1, 2 and 3 would all work

7. Something else or Paul has cocked
up the slide!

1. 2. 3. 4. 5. 6. 7.

14% 14% 14% 14%14%14%14%

public class Player

{

private String name;

private int level;

private String game;

(all getters and setters for name

and game are assumed, and the

getter for level is also assumed)

public void setLevel(int lev)

{

if (game.equalsIgnoreCase("golf"))

{

double level = 10;

}

else

{

double level = lev;

}

}

}

1. You should remove the package
lines in both classes

2. You should change the package
line in Class 1 so that it is in
the many package

3. You should change the package
line in Class 2 so that it is in
the single package

4. In class 1, you should add an
import statement to import
class 2

5. In class 2, you should add an
import statement to import
class 1

6. There is nothing wrong – the
code is fine

7. Something else or Paul has
cocked up the slide!

1. 2. 3. 4. 5. 6. 7.

14% 14% 14% 14%14%14%14%

Class 1:

package uk.ac.kingston.single;

public class Person

{

private String name;

private Group[] groups;

(getters and setters assumed)

}

Class 2:

package uk.ac.kingston.many;

public class Group

{

private String name;

private int grading;

(getters and setters also assumed)

}

 Methods can be given parameters from and return values to

the code that calls them

 Visibility affects whether or not an attribute (and a method,

for that matter) can be accessed directly outside of its class

 Best practice is to make attributes private

 We then create getter and setter methods so we can access

our attributes from elsewhere

60

 Packages are used to organise multi-class projects

 A package name must be specified as the FIRST line of a

class

 Packages usually start with a reversed domain name and

then you append whatever package name you want

 If a class is in a different package to another class, the

second class has to use import before it can use the first one

 Packages correspond to a directory structure on the hard

disk where the classes are stored

