

 An array is a special type of variable in that it can contain

many values

 If a standard variable is like a box, think of an array as being

like a box with compartments:

 One of these "compartments" is more correctly referred to as

an element of the array

 Each element has a unique number (or index)

 In most programming languages element indexes start at 0

3

 Arrays store a set of objects in elements

 Arrays in Java are actual objects

 Arrays can contain any type of element value
(primitive or objects) but a single array must contain
elements of the same type

 (although you could have an array of Object)

 To declare an array:

 declare an array variable

 create an array object and assign it to this variable

 store things in the array elements

Introduction 4

 To declare an array variable:

// int array

int[] banana;

This declares an array of integers, arr:

–Note that the number of integers in the
array is not specified at this stage.

5

 To Create an Array Object

 Use the new operator

int[] arr;

arr = new int[3];

or

int[] arr = new int[3];

create array of 3 ints:

arr[0], arr[1], arr[2]

Can be combined

in one statement

 If a variable is like a box, then an array is like a box with

numbered compartments…

String[] box = new String[5];

6

 Place elements into a “compartment” of the array by specifying

the compartment number:

 box[3] = “xyz”;

 Until you assign something to an array element, it will contain the

default value for that data type or class

 Primitive data types have default values – google "default primitive

values in java"

 Arrays of objects (i.e. that have a type that is a class) contain a default

value of null
7

“xyz”

 You can combine declaration, creation and initialisation in one
statement:

// 3 ints

int[] arr = {15,3,56};

// 3 strings

String[] strs = {“Paul”,”Fred”,”Bill”};

8

 You can get the length of an array with .length

 int[] arr = {1,6,8,24};

 arr.length would be 4

 We could use that in a for loop:

for (int i = 0; i < arr.length; i++)

{

System.out.println(arr[i]);

}

9

 Or, we can use an alternative loop construct called
a for/each loop:

 Verbal equivalent: For each element in an array

 Syntax example (assuming the array arr from the
previous slide)
for (int single : arr)

{

System.out.println(single);

}

 The loop iterates once for each element in arr

 The element is copied into a variable (single in this case)

 Then we can do something with single

10

 We can have an array of objects

Ball[] ballsOnASnookerTable = new Ball[22];

ballsOnASnookerTable[0] = new Ball();

ballsOnASnookerTable[0].setColour(“white”);

…and so on…!

11

 Remember the House “has a” Garden exercise a couple of

weeks ago?

 What if a house could have many gardens?

 We could make the garden attribute in house an array of

type Garden

 A house could then have several gardens…

12

public class House

{

public int bedrooms;

public Garden[] garden;

// …rest of class…

}

13

1. There is no relationship
between Foo and Bar

2. Foo has one single Bar

3. Bar has one single Foo

4. Foo has one or multiple
Bars

5. Bar has one or multiple
Foos

6. Both 4 and 5

7. Paul has found yet
another innovative way
to cock up an orange
slide 1. 2. 3. 4. 5. 6. 7.

8%

0% 0% 1%
5%

1%

85%

public class Foo

{

private int bar;

private Bar[] moo;

// getters and setters assumed
}

public class Bar

{

private String[] foo;

private int moo;

// getters and setters assumed
}

1.

2.

3.

4.

1. 2. 3. 4.

0% 1%

95%

4%

public class Wibble

{

private int bibble;

private Flibble[] nibble;

// getters and setters assumed
}

public class Wibble

{

private int bar;

private Flibble nibble;

// getters and setters assumed
}

public class Flibble

{

private int bar;

private Wibble[] nibble;

// getters and setters assumed
}

public class Flibble

{

private int bar;

private Wibble nibble;

// getters and setters assumed
}

1

2

3

4

 Inheritance is an OO technique that lets you use an existing

class as the basis for a new class

 The existing class is called the base class, superclass or parent

class

 The new class is called the subclass or child class

 The subclass inherits all the methods and attributes of the

superclass

17

 We can have different instances of ball

 They all have a colour

 They all have one diameter

 But what about if they aren't quite the same as every other

ball?

18

 A rugby ball has the same attributes as a

"normal" ball

 It has a colour

 It has a diameter

 However, it has a SECOND,

additional diameter attribute

 …which we’ll call
secondDiameter

19

Colour: white

Diameter: 27cm

Second Diameter: 19cm

Second Diameter

Diameter

 We can use inheritance to create a new class, OvalBall

 OvalBall will extend Ball

 This means it will inherit all of its existing attributes and

methods

 We can then add additional attributes and methods to the

subclass OvalBall that get added to the ones that have been

inherited

20

public class Ball

{

private double diameter;

private String colour;

public void setDiameter(double d)

{

this.diameter = d;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

public class Main

{

public static void main(String[] a)

{

OvalBall rugby = new OvalBall();

rugby.setDiameter(27);

rugby.setSecondDiameter(19);

}

}
21

public class Ball

{

private double diameter;

private String colour;

public void setDiameter(double d)

{

this.diameter = d;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

public class Main

{

public static void main(String[] a)

{

OvalBall rugby = new OvalBall();

rugby.setDiameter(27);

rugby.setSecondDiameter(19);

}

}

22

OvalBall inherits

setDiameter

from Ball

public class Ball

{

private double diameter;

private String colour;

public void setDiameter(double d)

{

this.diameter = d;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

public class Main

{

public static void main(String[] a)

{

OvalBall rugby = new OvalBall();

rugby.setDiameter(27);

rugby.setSecondDiameter(19);

}

}

23

OvalBall’s own attributes and

methods are combined with
those from the superclass, Ball

 We can replace an existing method from the superclass with

a new or altered version in the subclass

 Consider our OvalBall

 Ball has a method bounce that returns the height a ball bounces

based on its diameter

 …when an OvalBall bounces, would it bounce the same way as

a “normal” ball would?

24

25

 Let’s say for the

sake of argument
that an OvalBall

has a 50/50 chance

of landing on the

flat or the pointy

end…

 …if it lands on the pointy end, it should use diameter to

calculate the bounce height

 …if it lands on the flat end, it should use secondDiameter

to calculate the bounce height

26

public double bounce()

{

if (Math.random() > 0.5)

{

return this.getDiameter() * 2;

}

else

{

return this.getSecondDiameter() * 2;

}

}

 We can supply a version of bounce in
OvalBall that will override the one from
the superclass

 You can use super to

refer to the superclass

from the subclass

 So, we might write

our bounce method in

OvalBall like this

28

public double bounce

{

if (Math.random() > 0.5)

{

return super.bounce();

}

else

{

return this.getSecondDiameter() * 2;

}

}

 You can use super to

refer to the superclass

from the subclass

 So, we might write

our bounce method in

OvalBall like this

29

public double bounce

{

if (Math.random() > 0.5)

{

return super.bounce();

}

else

{

return this.getSecondDiameter() * 2;

}

}

 A superclass will “fit” into a subclass, e.g.

 Ball rugbyBall = new OvalBall();

 …but not the other way round…

 OvalBall rugbyBall = new Ball();

30

 But we could do

Ball firstBall = new Ball();

Ball secondBall = new Ball();

Ball thirdBall = new OvalBall();

// below will call bounce from Ball

secondBall.bounce();

// below will call bounce from OvalBall

thirdBall.bounce();

 This is called dynamic polymorphism

31

 If your superclass does not have the default (parameterless)

constructor, then you MUST have a constructor in your

subclass that uses super

32

public class Ball

{

private double diameter;

private String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

33

public class Ball

{

private double diameter;

private String colour;

public Ball(Double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

34

public class Ball

{

private double diameter;

private String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public OvalBall(double d, String c, double sd)

{

super(d,c);

this.secondDiameter = sd;

}

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

35

public class Ball

{

private double diameter;

private String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public OvalBall(double d, String c, double sd)

{

super(d,c);

this.secondDiameter = sd;

}

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

36

Call the superclass’s constructor

with these parameters

public class Ball

{

private double diameter;

private String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public OvalBall(double d, String c, double sd)

{

super(d,c);

this.secondDiameter = sd;

}

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

37

The superclass’s constructor only knows

about and sets diameter and colour…

public class Ball

{

private double diameter;

private String colour;

public Ball(double d, String c)

{

this.diameter = d;

this.colour = c;

}

// assume other methods follow

// including constructors

// and getter/setters...

}

public class OvalBall extends Ball

{

private double secondDiameter;

public OvalBall(double d, String c, double sd)

{

super(d,c);

this.secondDiameter = sd;

}

public void setSecondDiameter(double sd)

{

this.secondDiameter = sd;

}

// …rest of class methods etc here

}

38

…so after the call to the superclass’s constructor, we

return to the subclass’s constructor and set the

parameter(s) that are specific to the subclass

 A triangular arrow signifies that the relationship

between two classes involves inheritance

 The triangle goes at the superclass end

 We also refer to this as an “is a” relationship

 i.e. OvallBall “is a” Ball

39

Ball

-diameter
-colour

+bounce()
+roll()

OvalBall

-secondDiameter

+bounce()
+roll()

 Consider a university system…

Administrator

Lecturer

1. There is no relationship
between Googoo and
Gaga

2. Googoo is a Gaga

3. Googoo has one single
Gaga

4. Googoo has many Gagas

5. Gaga has one single
Googoo

6. Gaga has many Googoos

7. Gaga is a Googoo

8. Paul has found yet
another innovative way
to cock up an orange
slide

1. 2. 3. 4. 5. 6. 7. 8.

4%

63%

3%
0%

10%

5%

0%

16%

public class Googoo extends Gaga

{

private int meep;

private String[] gaga;

// getters and setters assumed
}

public class Gaga

{

private String mope;

private int googoo;

// getters and setters assumed
}

 If a variable is like a box, then an array is like a box with

compartments

 Declare an array with

int[] arr = new int[3];

or

int[] arr = {1,7,9,2,5,20};

 Get the length of an array with .length

 You can iterate (loop) through an array with the for/each

loop

 Attributes in a class can be of type array

 ..this is one way to represent the a “has-a” relationship when there

are several of the same objects involved in the attribute, e.g.

 A university has many students – Student[] students

 A house has several gardens – Garden[] gardens
42

 Inheritance lets us create new classes by using an
existing one as a base

 The existing class that we use is called the superclass

 The new class we create (using the superclass as a base) is
called the subclass

 We use the Java keyword extends to specify that a new
class uses an existing one as its superclass

 The subclass inherits all of the methods and attributes of
the superclass

 If we add any new methods or attributes in the subclass,
these are added alongside to the inherited ones from the
superclass

43

 You can replace an existing superclass method in the

subclass

 This is called overriding a method

 You can call methods in the superclass from the subclass
with super

 If you have constructors in your superclass, and one of them

is not the default (parameterless) constructor..

 any subclasses MUST include a constructor that calls the
superclass’s constructor via super

44

