Programming 1

Further Java;

Lecture #2: Arrays and Inheritance

Arrays - a recap

® An array is a special type of variable in that it can contain
many values

® If a standard variable is like a box, think of an array as being
like a box with compartments:

box

box[0] § box[1] ﬂ box[2]E box[3] box[4]

|"

® One of these "compartments” is more correctly referred to as
an element of the array

® Each element has a unique number (or index)

® In most programming languages element indexes start at 0

Arrays in Java

® Arrays store a set of objects in elements
® Arrays in Java are actual objects

® Arrays can contain any type of element value
(primitive or objects) but a single array must contain
elements of the same type

® (although you could have an array of Object)
® To declare an array:
® declare an array variable
® create an array object and assign it to this variable
® store things in the array elements

Arrays

® To declare an array variable:
// int array

int[] banana;

* This declares an array of integers, arr:

—Note that the number of integers in the
array is not specified at this stage.

Introduction 4

Arrays

create array of 3 ints:
arr[0], arr[1], arr[2]

® To Create an Array Object
® Use the new operator

int[] arr;

arr = new int[3];
Can be combined
@ / in one statement

int[] arr = new int[3];

Arrays in “boxspeak”

® If a variable is like a box, then an array is like a box with
numbered compartments...

String[] box = new String[5];

box[0] | box[1] 3 box[Z]B box[3] || box[4]

Putting things into the boxes

® Place elements into a “compartment” of the array by specifying
the compartment number:

® box[3] = “xyz”;

Y o "
3
"
"

box[0] § box[1] ﬂ box[Z]E box[3] | box[4]

\ 144

XYZ

® Until you assign something to an array element, it will contain the
default value for that data type or class
® Primitive data types have default values - google "default primitive
values in java"

® Arrays of objects (i.e. that have a type that is a class) contain a default

Y value of null

Putting things into the boxes

* You can combine declaration, creation and initialisation in one
statement:

// 3 ints
int[] arr = {15,3,56};

// 3 strings
String[] strs = {“Paul”,”Fred”,”Bill”};

Looping (iterating) through
the elements of an array

® You can get the length of an array with .length
® int[] arr = {1,6,8,24};

® arr.length would be 4

® We could use that in a for loop:

for (int 1 0; i < arr.length; i++)

{

System.out.println(arr[i]) ;

Interating through an array
with a for/each loop

® Or, we can use an alternative loop construct called
a for/each loop:

® Verbal equivalent: For each element in an array

® Syntax example (assuming the array arr from the
previous slide)

for (int single : arr)

{
System.out.println (single);

}
® The loop iterates once for each element in arr

® The element is copied into a variable (single in this case)
® Then we can do something with single

10

Arrays of objects

® We can have an array of objects
Ball[] ballsOnASnookerTable = new Ball[22];

ballsOnASnookerTable[0] = new Ball () ;
ballsOnASnookerTable[0] .setColour (“*white”) ;

...and so on...!

11

Arrays to represent a “has-
a” relationship

® Remember the House “has a” Garden exercise a couple of
weeks ago?

House Garden

T +width : double
1 +length : double

+bedrooms : int

+printMaxOccupancy()

+printSize()

® We could make the garden attribute in house an array of
type Garden

® A house could then have several gardens...

12

Arrays to represent a “has-
a” relationship

public class House

{

public int bedrooms;

public Garden[] garden;

// ..rest of class..

}

13

Given the two classes below, which
statement is most correct?

There is no relationship
between Foo and Bar

Foo has one single Bar
Bar has one single Foo

Foo has one or multiple
Bars

Bar has one or multiple
Foos

Both 4 and 5

Paul has found yet
another innovative way
to cock up an orange
slide

public class Foo

{

private int bar;
private Bar[] moo;

// getters and setters assumed

}

public class Bar

{

private String[] foo;
private int moo;

// getters and setters assumed
} T

sssssss

A W N =

0% 4% 1%
= LI e
. 2 s .

public class Wibble 1

{
private int bibble;

// getters and setters assumed

i Which of the below code excerpts most
appropriately represents the assertion
Flibble has many Wibbles?

private Flibble[] nibble;

public class Flibble
{

private int bar;
private Wibble[] nibble;

// getters and setters assumed

public class Wibble)
{

private int bar;
private Flibble nibble;

// getters and setters assumed

public class Flibble 4
{

private int bar;
private Wibble nibble;

// getters and setters assumed

Inheritance

What is inheritance?

® Inheritance is an OO technique that lets you use an existing
class as the basis for a new class

® The existing class is called the base class, superclass or parent
class

® The new class is called the subclass or child class

® The subclass inherits all the methods and attributes of the
superclass

17

Consider our balls,., (ooer)

® We can have different instances of ball
® They all have a colour
® They all have one diameter

® But what about if they aren't quite the same as every other
ball?

18

Dealing with funny shaped
balls

Colour: white
Diameter: 27cm
® It has a diameter Second Diameter: 19cm
® However, it has a SECOND, . ?
additional diameter attribute

® ..which we’ll call
secondDiameter

® Arugby ball has the same attributes as a
"normal” ball

® It has a colour

Second Diameter

v

<4— Diameter

19

Extending our balls

® We can use inheritance to create a new class, OvalBall

® OvalBall will extend Ball

® This means it will inherit all of its existing attributes and
methods

® We can then add additional attributes and methods to the
subclass OvalBall that get added to the ones that have been
inherited

20

public class OvalBall extends Ball
{

private double secondDiameter;

public class Ball
{
private double diameter;

private String colour;
public void setSecondDiameter (double sd)

public void setDiameter (double d) {

{

this.secondDiameter = sd;
this.diameter = d;
// ..rest of class methods etc here

// assume other methods follow

// including constructors
public class Main

{

public static void main(String[] a)

{

// and getter/setters...

OvalBall rugby = new OvalBall() ;
rugby.setDiameter (27) ;
rugby.setSecondDiameter (19) ;

21

public class Ball public class OvalBall extends Ball
{ {

private double diameter; private double secondDiameter;
private String colour;
public void setSecondDiameter (double sd)

public void lsetDiameter{double d) {

___________ this.secondDiameter = sd;

this.diameter =

// .rest of class methods etc here

// assume other methods follo
// including constructors public class Main
// and getter/setters...

blic static void main(String[] a)

OvalBall inherits {
setDiliameter OvalBall rugby = new OvalBall();
from Rall rugby .!_setDiameter:(27) ;

rugby.setSecondDiameter (19) ;

22

public class Ball

{

private double diameter;

private String colour;

public void setDiameter (double d)

{

this.diameter = d;

// assume other methods follow
// including constructors

// and getter/setters...

OvalBall’s own attributes and

methods are combined with
those from the superclass, Ball

23

public class OvalBall extends Ball
{

private double secondDiameter;

{

this.secondDiametenr = sd;

// .rest of class methods etc here

public class Main

{

public static void majin (String[] a)

{
OvalBall rugby = new OvalBall() ;

rugby.setDiameter (2)'

e e A ———

}

Method overriding

® We can replace an existing method from the superclass with
a new or altered version in the subclass

® Consider our OvalBall

® Ball has a method bounce that returns the height a ball bounces
based on its diameter

® ..when an OvalBall bounces, would it bounce the same way as
a “normal” ball would?

24

©

25

Let’s say for the
sake of argument
that an OvalBall
has a 50/50 chance
of landing on the
flat or the pointy
end...

Method overriding

/

Landing
on the
pointy
end

Landing
« on the flat
end

Method overriding

® ..if it lands on the pointy end, it should use diameter to
calculate the bounce height

® ...if it lands on the flat end, it should use secondDiameter
to calculate the bounce height

26

Method overriding

We can supply a version of bounce in
OvalBall that will override the one from

the superclass

public double bounce ()

{
if (Math.random() > 0.5)

{

return this.getDiameter () * 2;

}

else

{

return this.getSecondDiameter () * 2;

}
}

® You can use super to

refer to the superclass
from the subclass

® S0, we might write

28

our bounce method in
OvalBall like this

super

public double bounce

{
if (Math.random() > 0.5)

{

return super.bounce() ;

}

else

{

return this.getSecondDiameter () * 2;

® You can use super to

refer to the superclass
from the subclass

® S0, we might write

29

our bounce method in
OvalBall like this

super

public double bounce

{
if (Math.random() > 0.5)

{

return super.bounce () ;

}

else

{

return this.getSecondDiameter () * 2;

Subclass and superclass type
compatibility

® A superclass will “fit” into a subclass, e.g.
©® Ball rugbyBall = new OvalBall();

® ...but not the other way round...
©® OvalBall rugbyBall = new Ball();

30

Subclass and superclass type
compatibility

® But we could do
Ball firstBall = new Ball();
Ball secondBall = new Ball();
Ball thirdBall = new OvalBall()
// below will call bounce from Ball
secondBall .bounce () ;
// below will call bounce from OvalBall
thirdBall .bounce () ;
® This is called dynamic polymorphism

31

Constructors and inheritance

® If your superclass does not have the default (parameterless)
constructor, then you MUST have a constructor in your
subclass that uses super

32

Inheritance and constructors

public class Ball

{

33

private double diameter;

private String colour;

public Ball (double d, String c)

{

//
//
//

this.diameter = d;

this.colour = c;

assume other methods follow
including constructors

and getter/setters...

public class OvalBall extends Ball

{

private double secondDiameter;

public void setSecondDiameter (double sd)

{

this.secondDiameter = sd;

// ..rest of class methods etc here

Inheritance and constructors

ic class Ball

public class OvalBall extends

{
“ i g private double seg ameter;
private St our;
public Bal eter (double sd)
{
this.diameter =

.secondDiameter =

I I I methods etc here

this.colour = c;

| @ M
// assume other 3

// includig
// ang

ructors

Br/setters. ..

34

Inheritance and constructors

public class Ball public class OvalBall extends Ball
{ {

private double diameter; private double secondDiameter;

i 1 1 ; . .
Q= ® String colour public OvalBall (double d, String c, double sd)
{
public Ball (double d, String c) super (d, c) ;
{ this.secondDiameter = sd;
this.diameter = d; }
this.colour = c;
) public void setSecondDiameter (double sd)
{

this.secondDiameter = sd;
// assume other methods follow }

// including constructors

// and getter/setters... // ..rest of class methods etc here

35

Inheritance and constructors

public class Ball public class OvalBall extends Ball
{ {
IR Gouble diameter; private double secondDiameter;

rivate String colour; . :
P g public OvalBall (double d, String c, double sd)

{
—————————————————————————————— Call the superclass’s constructor
lic Ball 1 ! . !
i C Ba ;_d_o_u_b_ < _d_ B _S_t_r_l_n_g_ _C_) 1 super (d, C) 7 with these parameters
{ this.secondDiameter = sd;
this.diameter = d; }
this.colour = c;

public void setSecondDiameter (double sd)

{

this.secondDiameter = sd;
// assume other methods follow }
// including constructors
// and getter/setters... // ..rest of class methods etc here

36

Inheritance and constructors

public class Ball public class OvalBall extends Ball
{ {

IR Gouble diameter; private double secondDiameter;

ivate Stri lour; -]
B L LR public OvalBall (double d, String c, double sd)
{
public Ball (double d, String c) super (d, c) ;

{ this.secondDiameter = sd;

The superclass’s constructor only knows

this.colour = c; about and sets diameter and colouir...
} L o o o e puoTIITCc voIa setseconaurameter (double sd)
{
this.secondDiameter = sd;
// assume other methods follow }
// including constructors
// and getter/setters... // ..rest of class methods etc here

37

{

Inheritance and constructors

public class Ball

private double diameter;

private String colour;

public Ball (double d, String c)

{

//
//
//

38

this.diameter = d;

this.colour = c;

assume other methods follow
including constructors

and getter/setters...

public class OvalBall extends Ball
{

private double secondDiameter;

public OvalBall (double d, String c, double sd)
{

...s0 after the call to the superclass’s constructor, we
return to the subclass’s constructor and set the
{ | parameter(s) that are specific to the subclass

tnis.seconaviameter = sS4y

// ..rest of class methods etc here

UML Class Diagram notation
for inheritance

® A triangular arrow signifies that the relationship
between two classes involves inheritance

Ball
OvalBall
-diameter L
-colour ™ _____'ff__c_?_rl(.j..[)..i.?.m.?fff---
+bounce() +bounce()
+roll() +rolll)

® The triangle goes at the superclass end

® We also refer to this as an “is a” relationship
® i.e. OvallBall “is a” Ball

39

A more complex example

® Consider a university system...

Citizen Male

Nationality Gender

e Person ep——

Foreigner Female
Role Associate
Professor

Lecturer -Q-
Student Employee [l Brofass
Degree type
Administrator
Undergrad Masters PHD

Student Student Student

Given the two classes below, which
statement is most correct?

There is no relationship
between Googoo and
Gaga

Googoo is a Gaga

Googoo has one single
Gaga

Googoo has many Gagas

Gaga has one single
Googoo

Gaga has many Googoos
Gaga is a Googoo

Paul has found yet
another innovative way
to cock up an orange
slide

public class Googoo extends Gaga

{

private int meep;
private String[] gaga;

// getters and setters assumed

}

public class Gaga

{
private String mope;
private int googoo;

// getters and setters assumed
} .

11111111

Summary

® If a variable is like a box, then an array is like a box with
compartments

® Declare an array with
int[] arr = new int[3];
or
int[] arr = {1,7,9,2,5,20};
® Get the length of an array with .length

® You can iterate (loop) through an array with the for/each
loop

® Attributes in a class can be of type array

® ..this is one way to represent the a “has-a” relationship when there
are several of the same objects involved in the attribute, e.g.

® A university has many students - Student[] students

42
® A house has several gardens - Garden[] gardens

Summary

® Inheritance lets us create new classes by using an

43

©
O]

©

existing one as a base
The existing class that we use is called the superclass

The new class we create (using the superclass as a base) is
called the subclass

We use the Java keyword extends to specify that a new
class uses an existing one as its superclass

The subclass inherits all of the methods and attributes of
the superclass

If we add any new methods or attributes in the subclass,
these are added alongside to the inherited ones from the
superclass

Summary

® You can replace an existing superclass method in the
subclass

® This is called overriding a method

® You can call methods in the superclass from the subclass
with super

® If you have constructors in your superclass, and one of them
is not the default (parameterless) constructor..

® any subclasses MUST include a constructor that calls the
superclass’s constructor via super

44

