

 If a variable is like a box an array is like a box with

compartments

 The compartments in arrays are numbered (the element

number, starting at 0) and they have a fixed length

 Once the length is set it cannot change

 But consider the following scenario:

 What happens if someone new wants to join our awesome

club?

String[] clubMembers = new String[5];

clubMembers[0] = "Paul";

clubMembers[1] = "Fred";

clubMembers[2] = "Janet";

clubMembers[3] = "Susan";

clubMembers[4] = "Bill";

 …and then later Lloyd joins the club

clubMembers[5] = "Lloyd";

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException

 …seems the club is closed for new members 

String[] clubMembers = new String[5];

clubMembers[0] = "Paul";

clubMembers[1] = "Fred";

clubMembers[2] = "Janet";

clubMembers[3] = "Susan";

clubMembers[4] = "Bill";

 Arrays have a fixed length – this is rubbish if you don't know
the length of your list at the outset, or you want to
dynamically change the length

 What if someone leaves the club?

 What if you want to add someone in the middle of the list?

 Arrays are indexed by number, what about if you want to
index by something else? For example…

 What about if you want to ensure that things in your list are
unique?

 Student K numbers are unique…

K number Student name

k123123 Walter White

k142121 Jesse Pinkman

k153234 Saul Goodman

 A collection is a Java object that can contain objects

 Think of them as arrays on steroids – a variation of the box

with compartments, but with more flexibility

 You can have a box with numbered compartments that can grow

and shrink as needed (a list)

 You can have a box that stores only unique items (a set)

 You can have a box that stores items with (unique) keys (a map)

 The collections framework consists of

 Interfaces

 Abstract classes representing various top-level types of collections,

e.g. Set, Map, List

 Implementations

 Concrete classes that YOU can use as a Java programmer that

implement the interfaces, e.g. ArrayList, HashMap, HashSet

 Utility methods

 Provide useful functions like searching and sorting

 There are many more collections – we'll look at the "good" ones
(shown)

 If you want to find out more, check out the Java API docs online

 All collections classes reside in the java.util package

 If you want to make use of a given class, you will need to import
it!

Collection

Queue ListSet

Map

ArrayList

HashMap LinkedHashMap

HashSet TreeSet

 All collections have a basic

set of methods:

 Depending on which one you're using, there may be extra

methods specific to the collection at hand

add adds an element to the collection

contains checks if the specified element exists in the

collection; return true if it does and false if not

remove removes an element from the collection

clear removes all elements

size gives you the number of elements

isEmpty return true if the collection is empty, false if it has

some elements in

 The ArrayList is a list that works similarly to an array
(clue's in the name!)

 You can use an ArrayList as an almost drop-in replacement
for an array:

String[] clubMembers = new String[5];

clubMembers[0] = "Paul";

clubMembers[1] = "Fred";

clubMembers[2] = "Janet";

clubMembers[3] = "Susan";

clubMembers[4] = "Bill";

ArrayList<String> clubMembers = new ArrayList();

clubMembers.add("Paul");

clubMembers.add("Fred");

clubMembers.add("Janet");

clubMembers.add("Susan");

clubMembers.add("Bill");

 You specify the type of data you are going to store in the
ArrayList using a generic

 You do NOT need to specify the size of the ArrayList up front

 You add new items to the ArrayList using the add method

 this will dynamically grow the ArrayList as needed

 You can get items from the ArrayList using the get method

 the numeric parameter is like the array index

 In this case, we'd get Janet (the first element is zero, just like an
array)

ArrayList<String> clubMembers = new ArrayList();

clubMembers.add("Paul");

clubMembers.add("Fred");

clubMembers.add("Janet");

clubMembers.add("Susan");

clubMembers.add("Bill");

System.out.println(clubMembers.get(2));

 You specify the type of data you are going to store in the
ArrayList using a generic

 You do NOT need to specify the size of the ArrayList up front

 You add new items to the ArrayList using the add method

 this will dynamically grow the ArrayList as needed

 You can get items from the ArrayList using the get method

 the numeric parameter is like the array index

 In this case, we'd get Janet (the first element is zero, just like an
array)

ArrayList<String> clubMembers = new ArrayList();

clubMembers.add("Paul");

clubMembers.add("Fred");

clubMembers.add("Janet");

clubMembers.add("Susan");

clubMembers.add("Bill");

System.out.println(clubMembers.get(2));

 You specify the type of data you are going to store in the
ArrayList using a generic

 You do NOT need to specify the size of the ArrayList up front

 You add new items to the ArrayList using the add method

 this will dynamically grow the ArrayList as needed

 You can get items from the ArrayList using the get method

 the numeric parameter is like the array index

 In this case, we'd get Janet (the first element is zero, just like an
array)

ArrayList<String> clubMembers = new ArrayList();

clubMembers.add("Paul");

clubMembers.add("Fred");

clubMembers.add("Janet");

clubMembers.add("Susan");

clubMembers.add("Bill");

System.out.println(clubMembers.get(2));

 (assuming that our ArrayList clubMembers contained
Paul, Fred, Janet, Susan and Bill)

(0) (1) (2) (3) (4)

 We can remove things from the ArrayList using remove and
removeRange:

 clubMembers.remove("Fred");

 Our members would be Paul, Janet, Susan and Bill

 clubMembers.remove(3);

 Our members would be Paul, Fred, Janet and Bill

 clubMembers.removeRange(1,3);

 Our members would be Paul, Susan and Bill

 …it's removed elements 1 (inclusive) to 3 (exclusive)

 The ArrayList would shrink accordingly as things were
removed

 Use the size method to determine how many elements are

in an ArrayList (or any collection, for that matter)

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

System.out.println(modules.size());

 Use the size method to determine how many elements are

in an ArrayList (or any collection, for that matter)

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

System.out.println(modules.size());

 The result would be 3

 NB: Note that as with arrays, because the first element is

zero, the size of an ArrayList will always be one greater

than the index number of the last element!

 NB #2: Note that size is a method on the class ArrayList.

So it is followed by brackets!

 You can add items into the list in the middle:

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

modules.add(2,"Advanced Dave Baiting");

 You can add items into the list in the middle:

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

modules.add(2,"Advanced Dave Baiting");

 The ArrayList would end up containing

Element 0 Programming 1

1 System Environments

2 Advanced Dave Baiting

(was originally 2) 3 Neutron Bomb Juggling

 You can use a for loop to go
through an ArrayList

for (int i = 0; i < modules.size(); i++)

{

String singleModule = modules.get(i);

System.out.println(singleModule);

}

 However, the for/each loop construct can also be used:

for (String singleModule : modules)

{

System.out.println(singleModule);

}

(The for/each works on standard arrays, too!)

 What's wrong with this picture?

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

modules.add("Advanced Dave Baiting");

for (String currentModule : modules)

{

if (currentModule.equals("System Environments"))

{

modules.remove(currentModule);

}

System.out.println(currentModule);

}

 What's wrong with this picture?

ArrayList<String> modules = new ArrayList();

modules.add("Programming 1");

modules.add("System Environments");

modules.add("Neutron Bomb Juggling");

modules.add("Advanced Dave Baiting");

for (String currentModule : modules)

{

if (currentModule.equals("System Environments"))

{

modules.remove(currentModule);

}

System.out.println(currentModule);

}

Exception in thread "main"

java.util.CurrentModificationException – WTF?!

 If you are iterating through a collection, you cannot modify

the collection

 So in the previous example, when we tried to modify the

ArrayList half way through the for/each, we got a

ConcurrentModificationException

 In English: we were modifying something within a loop upon

which the loop was dependent

 An Iterator lets us iterate through

a collection and make changes to

it as we go

 On any collection there will be a method called iterator

(surprisingly enough) that will give us an iterator object

 The iterator has a variety of methods that let traverse

through and (among other things) remove items from the

collection as we go

 (assuming the ArrayList called modules from previous slides)

 First get an iterator from the collection object

Iterator<String> myIt = modules.iterator();

 The method hasNext() gives true or false if there's another
element in the collection

 We can use this as the condition for a while loop

while (myIt.hasNext())

 The method next() gives us the next element in the collection

 The method remove() will remove the next element in the
collection without making the iteration fall over

String currentModule = myIt.next();

if (currentModule.equals("System Environments"))

{

myIt.remove();

}

Iterator myIt = modules.iterator();

while (myIt.hasNext())

{

String currentModule = myIt.next();

if (currentModule.equals("System Environments"))

{

myIt.remove();

}

}

 Collections store objects

 Up until now we've stored Strings

 But we could store ints, or doubles – or even instances of your own
defined classes

 For example…

assuming you have a House class with appropriate attributes, getters
and setters

House pauls = new House();

pauls.setAddress("49 Flibble Street");

House jills = new House();

jills.setAddress("78 Flibble Street");

ArrayList<House> flibbleStreet = new ArrayList();

flibbleStreet.add(pauls);

flibbleStreet.add(jills);

 We've seen how we can use Strings or our own classes as a data type
for a collection

 (or more accurately, we can use Strings or our own classes as a generic, e.g.
the bit between the < > when we declare an array list, e.g. <String> or
<Student>)

 However, you cannot use primitive data types!

 So ArrayList<int> broken = new ArrayList();

would not work! 

 Instead, there are "wrapper" classes for the primitive data types you
must use, e.g.

 ArrayList<Integer> works = new ArrayList();

 ArrayList<Double> alsoWorks = new ArrayList();

 When it comes to the practical, anyone who gets this wrong, I shall
point, and laugh at you!

 (because it will demonstrate you either weren't paying attention in the
lecture, or because you weren't AT the lecture! )

 Java offers other Collections apart from the array-like

ArrayList

 One of the more useful ones are the Map collections

 We will take a look at the HashMap

 If an array (and an ArrayList) is like a box with numbered

compartments, then the Map is like a box with named

compartments:

HashMap<String,String> box = new HashMap();

box.put("k12345","Paul"); box.put("k10422","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin");

 If an array (and an ArrayList) is like a box with numbered

compartments, then the Map is like a box with named

compartments:

HashMap<String,String> box = new HashMap();

box.put("k12345","Paul"); box.put("k10422","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin");

k12345 k13365 k10422 k10422 k10991

Paul Jill Kevin Ringo Sammy

 If an array (and an ArrayList) is like a box with numbered

compartments, then the Map is like a box with named

compartments:

HashMap<String,String> box = new HashMap();

box.put("k12345" , "Paul"); box.put("k10422","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin");

k12345 k13365 k10422 k10422 k10991

Paul Jill Kevin Ringo Sammy

This is the label for the box

This is the value we're putting INTO the box

 Use get to retrieve stuff from the map

 Supply a KEY to get the value back:

String failingStudent = box.get("K104222");

 Use get to retrieve stuff from the map

 Supply a KEY to get the VALUE back:

String failingStudent = box.get("k104222");

k12345 k13365 k10422 k10423 k10991

Paul Jill Kevin Ringo Sammy

failingStudent

 Note that the KEY of a map entry is unique… so if you put

something using a key that's already been used, you are

REPLACING the original value:

HashMap<String,String> box = new HashMap();

box.put("k12345","Paul"); box.put("k10423","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin"); box.put("k10991","Basil");

k12345 k13365 k10422 k10423 k10991

Paul Jill Kevin Ringo Sammy

 Note that the KEY of a map entry is unique… so if you put

something using a key that's already been used, you are

REPLACING the original value:

HashMap<String,String> box = new HashMap();

box.put("k12345","Paul"); box.put("k10423","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin"); box.put("k10991","Basil");

k12345 k13365 k10422 k10423 k10991

Paul Jill Kevin Ringo

Basil

Sammy

 The two data types that follow the HashMap keyword specify

the data type for the key and the value of each HashMap

entry:

HashMap<String,String> box = new HashMap();

 So this meant, give me a HashMap that labels its

compartments with Strings, and that stores Strings in each

compartment

 Nothing says that you have to store strings – or even use

strings as labels

assuming you have a Student class with appropriate attributes,

getters and setters…

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

HashMap<String,Student> students = new HashMap();

students.put("k14242",paul);

assuming you have a Student class with appropriate attributes,

getters and setters…

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

HashMap< String , Student > students = new HashMap();

students.put("k14242" , paul);

Our KEY is a String, our VALUE is an instance of our

Student class

(brainf**k time )

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

ArrayList<Integer> marks = new ArrayList();

marks.add(75);

marks.add(81);

HashMap<Student,ArrayList<Integer>> students = new HashMap();

students.put(paul,marks);

(brainf**k time )

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

ArrayList< Integer > marks = new ArrayList();

marks.add(75);

marks.add(81);

HashMap<Student,ArrayList<Integer>> students = new HashMap();

students.put(paul,marks);

Don't forget: if you are using integers or other primitive data types in

your collections, you need to use the wrapper classes rather than int or

double. Look for the capital letter!

(brainf**k time )

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

ArrayList<Integer> marks = new ArrayList();

marks.add(75);

marks.add(81);

HashMap< Student , ArrayList<Integer>> students = new HashMap();

students.put(paul,marks);

Nothing says the KEY has to be a

simple data type or class. You can

use complex objects as a key.

(brainf**k time )

Student paul = new Student();

paul.setName("Paul Neve");

paul.setCourse("Flower Arranging");

ArrayList<Integer> marks = new ArrayList();

marks.add(75);

marks.add(81);

HashMap<Student, ArrayList<Integer> > students = new HashMap();

students.put(paul,marks);

Here's the cool bit. Nothing stops us specifying an ArrayList as a data type – so in

this case, we're saying the values in our HashMap will each be an ArrayList! So,

for each student (the KEY) we can store an ArrayList of their marks (the VALUE)

(continuing the brainf**k example)

 Say we had several students in our HashMap (so not just

Paul)

 So say we had instances of Student named Jill, Fred, Harry

as well as Paul

 Say all of these instances of Student had been added to the
HashMap with corresponding ArrayLists of their marks

 Then given a specific instance of a Student, we could do

ArrayList<Integer> janesMarks = students.get(jane);

 (Don't panic if this has blown your mind! The exercises won't go

quite this far…)

containsKey Gives true if the HashMap contains a value for a given key, false if it

doesn't

e.g.
if (box.containsKey("k12345"))

{

System.out.println("We have that K number!");

}

containsValue Gives true is the HashMap contains the given value (under ANY key)

e.g.
if (box.containsValue("Paul"))

{

System.out.println("We have that student!");

}

remove Removes any value for the given key, e.g.
box.remove("k10422"); // poor Ringo

HashMap<String,String> box = new HashMap();

box.put("k12345","Paul"); box.put("k10422","Ringo");

box.put("k13365","Jill"); box.put("k10991","Sammy");

box.put("k10422","Kevin");

 Collections based on sets store unique values (as in a

mathematical set)

 There are no duplicate values, and many implementations

don't have any specific ordering or way of navigation

 The key thing about sets is the whole "is some value in the

set"?

 think of them as sort of being like HashMaps without the key

HashSet<String> myset = new HashSet();

myset.add("Banana");

myset.add("Orange");

myset.add("Apple");

if (myset.contains("Potato"))

{

System.out.println("Time to make some chips");

}

Given the first line

HashSet<String> fruits = new HashSet();

or

ArrayList<String> fruits = new ArrayList();

then the following code in both cases

fruits.add("Banana");

fruits.add("Orange");

fruits.add("Apple");

fruits.add("Banana");

for (String fruit : fruits)

{

System.out.println(fruit);

}

 Remember that collections are just data types like any other

 So, nothing stops you having a collection as an attribute on

one of your classes

 For example, a Student has many Modules

 Maybe Student has an attribute called modules which is an

ArrayList of a Module class…?

 The Java collections API gives you a variety of ways in which

you can store collections of objects that improves upon

standard arrays

 Use an ArrayList as an almost straight replacement for an

array – but it can grow and shrink through add, inserting or

removing items

 Use a HashMap to store things as key/value pairs

 So you can index data based on things other than a numeric index

 You can index by your objects, which lets you store data

associated with that object

 Use a set to keep a track of a unique list of items

