

 Javascript is NOT Java!

 Originally created by Netscape (RIP)

 …it was originally going to be called LiveScript, but Java was

fashionable at the time, so Netscape decided to jump on the

bandwagon and call it Javascript

 There are similarities between Java and Javascript

 Both are C like languages, so use similar constructs for for, while,

do/while, if etc.

 There are differences between Java and Javascript

 Java is strongly typed, Javascript is weakly typed

 Java is compiled*, Javascript is interpreted

 Java is an out-and-out object oriented language, Javascript supports

many ways of programming (including OO)

 Mostly (but not exclusively) used as a client-side

scripting language for the web

 Javascript is built into all modern web browsers

 Javascript code is either

 embedded into an HTML page in a <script> element

 placed in an external file which will be referenced in the

HTML page

 Either way, to put it simply, Javascript code is sent by a

web server alongside the HTML of the page

 The browser then runs the Javascript code – the code

runs client side.

 Ordinarily, a Javascript program will be written to interact

with an accompanying HTML page

 There is no direct equivalent of DISPLAY (from Banana) or

System.out.println (from Java)

 There is no direct equivalent of GET (from Banana) or the

Scanner from Java

 Translation, in English: there's no direct way of getting user

input or displaying something to the user in Javascript

 To get input from the user, a Javascript program might read the

contents of an HTML form field

 To display output to the user, a Javascript program might modify

the contents of an HTML element or elements

HTML

Javascript

 In the first couple of weeks, we want you to get used to the

Javascript language and not have to worry about the

complexities of HTML's involvement as well

 So, we will give you a console for input and output

 You can use console.log to print something out to this console

 You can use prompt to get input from the user

 In week three of this unit, we'll draw back the curtain and

remove this support, and you'll start writing "proper"

Javascript in the same way it's used on real web pages

 Most of the basic constructs in Javascript such as for,

while, do/while and if are similar to Java and/or PHP

 Be sure to remember the role of code blocks { } and

semicolons, and when these are necessary!

 Javascript is weakly typed – more about this later!

 A variable is like a box – although with certain rules and

restrictions

 Our boxes have labels on the side

 We can put one thing only into each box

In Javascript, this would be

var box1 = "Paul";

var box2 = 57;

var box3 = -2.7521;

In Banana, this would be

set box1 = "Paul"

set box2 = 57

set box3 = -2.7521

 If you try to put a value into a variable that is already defined,

and already contains a value, the new value replaces the old

one

var name = "Prince";

console.log(name);

name = "The Artist Formerly Known As";

console.log(name);

Line 1 Line 3

 The var keyword is used to declare a variable in Javascript

 When you've declared it, you don't need to keep repeating var:

var name = "Prince";

console.log(name);

name = "The Artist Formerly Known As";

console.log(name);

var used to declare variable the first time

no var when just accessing (using) the variable

no var when just accessing (using) the variable

no var when assigning

a new value

 You can use a variable in code anywhere where the value it

contains would "fit"

 e.g.

var myVariable = 2;

console.log(myVariable);

console.log(myVariable+6);

 is grammatically the same as

console.log(2);

console.log(2+6);

 "REMEMBER THE GRAMMAR"…

 Javascript is a weakly typed language

 This means that you do NOT have to specify the type of data that

you store in each variable (unlike Java, which is strongly typed)

 When you indicate that you are declaring a new variable with the
keyword var that's all you need - no

 var box1 = "Paul";

 Javascript will automatically "figure out" what kind of data you're putting
into the variable

give me

a new

box

label

it

box1

put the text

value paul into

it

var box2 = 57;

give me

a new

box

label

it

box2

put the integer

value 57 into it

 You can use a variable in code anywhere where the value it

contains would "fit"

 e.g.

var anotherVariable = "Good morning";

console.log(myVariable);

 is basically saying

var anotherVariable = "Good morning";

console.log(myVariable);

"Good morning"

 but don't make the mistake

var anotherVariable = "Good morning";

console.log("myVariable");

..unless of course your intention is actually to print the text myVariable and NOT the
contents of the variable itself!

 You don't have to declare a new variable with the var keyword, but
you should

var stuff = "some text"; stuff = "some text"

console.log(stuff); console.log(stuff);

stuff = "new text"; stuff = "new text";

console.log(stuff); console.log(stuff);

 You can get away with re-declaring your variable every time, but you
shouldn't

var stuff = "some text"; var stuff = "some text"

console.log(stuff); console.log(stuff);

stuff = "new text"; var stuff = "new text";

console.log(stuff); console.log(stuff);

 All the usual ones you'll have seen in Banana

+ add (or concatenate* when a string/text value is involved)

- Subtract

*multiply

/ divide

% remainder (modulus)

 So

 4 + 2 = 6

 4 – 2 = 2

 4 * 2 = 8

 13 % 3 = 1 (13 divided by 3 is 2 with a remainder of 1)

 "abc" + "def" = "abcdef"

 27 + "xyz" = "27xyz"

var age = 39;

age = age + 1; // another year older

var age = 27;

age++; // shorthand for age = age + 1

// there's also age-- to deduct by 1

var coursework = 25;

var exam = 46;

var totalMark = coursework + exam;

var totalPercent = totalMark / 80 * 100;

1. 67

2. 57

3. 7.2479

4. 7.2479Paul

5. 57Paul

6. 67Paul

7. There would be an
error

1. 2. 3. 4. 5. 6. 7.

0% 0% 0%
4%

84%

12%

0%

var box1 = "Paul";

var box2 = 57;

var box3 = -2.7521;

box2 = box2 + 10;

box1 = box2 + box1

console.log(box1)

 Banana

set number = 10

if number > 5

display "Number is big"

endif

 Javascript

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

 Most C-like languages don't use explicit keywords like endif or
endfor to mark the end of a construct

 Instead, curly brackets { } are used to denote a code block

 The start of a code block is the left facing curly bracket {

 The end of a code block is the right facing curly bracket }

 The contents of a code block go with the preceding statement

 So in this case, the code console.log("Number is big")
within the code block gets run when the condition in the if
statement is true

 Banana

set number = 10

if number > 5

display "Number is big"

endif

 Javascript

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

 The conditional part of a conditional statement should

be enclosed in brackets

 This includes if statements, while statements and

do/while statements (equivalent to repeat/until in

Banana)

 Banana

set number = 10

if number > 5

display "Number is big"

endif

 Javascript

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

 Javascript

var number = 10 ;

if (number > 5)

{

console.log("Number is big") ;

}

 Semi-colons denote the

end of a statement

 Think of them like being

like a full-stop at the end

of a sentence in English

 You MUST have a semi-

colon after every

statement

 The one exception is

immediately after a curly

bracket closing a code block

1. It will print nothing (but
won’t cause an error)

2. It will print Number is big

3. It will print nothing other
than an error

4. It will print the value of the
variable number (i.e. 2)

1. 2. 3. 4.

73%

0%

23%

4%

var number = 2;

if (number > 5);

{

console.log("Number is big");

}

 A common mistake:

var number = 2;

if (number > 5) ;

{

console.log("Number is big");

}

 You should NEVER ever

ever have a semi-colon

immediately after the
condition of an if

statement

 A semi-colon signifies the

end of a statement

 An if statement doesn't end

after the condition!

 It ends at the closing curly

bracket of the associated

code block

 A common mistake:

var number = 2;

if (number > 5) ;

{

console.log("Number is big");

}

 So here you are actually

saying

 "if number is greater than

5"…

 A common mistake:

var number = 2;

if (number > 5) ;

{

console.log("Number is big");

}

 So here you are actually

saying

 "if number is greater than

5"…

 …do this (i.e. do nothing!)

 A common mistake:

var number = 2;

if (number > 5);

{

console.log("Number is big");

}

 So here you are actually

saying

 "if number is greater than

5"…

 …do this (i.e. do nothing!)

 The now-orphaned code

block would always

execute

 it is not associated with the
if statement

 the if statement finishes at

the semi-colon

 Wrong

var number = 7;

if (number < 5);

{

console.log("Number is small");

}

 Right

var number = 7;

if (number < 5)

{

console.log("Number is small");

}

 What would the code on the left print?

 What would the code on the right print?

 Wrong

var number = 7;

if (number < 5) ;

{

console.log("Number is small");

}

 Right

var number = 7;

if (number < 5)

{

console.log("Number is small");

}

 if number is less

than 5 do this…

 …after you've

checked, carry on

and run this code

 if number is less

than 5 do this…

 Banana

set number = 10

if number > 5

display "Number is big"

else

display "Number is small"

endif

 Javascript

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

else

{

console.log("Number is small");

}

 Banana

set number = 10

if number > 5

display "Number is big"

else

display "Number is small"

endif

 Javascript

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

else

{

console.log("Number is small");

}

 else statements have their

own, discrete code block

 Unlike in our Banana, the
else keyword does not by

itself denote the end of
the initial if condition

 Correct

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

else

{

console.log("Number is small");

}

 Incorrect

var number = 10;

if (number > 5)

{

console.log("Number is big");

else

console.log("Number is small");

}

 Valid

var number = 10;

if (number > 5)

{

console.log("Number is big");

}

else

{

console.log("Number is small");

}

 Also valid

var number = 10;

if (number > 5) {

console.log("Number is big");

}

else {

console.log("Number is small");

}

 Also also valid (but really not advised!)

var number = 10; if (number > 5) { console.log("Number is big"); } else

{ console.log("Number is small"); }

1. Not two bad…

2. Threedom!

3. I’m confused

4. There would be
an error

1. 2. 3. 4.

75%

10%10%
6%

var number = 2.185;

if (number > 2)

{

console.log(“Not two bad…”);

}

else if (number < 3)

{

console.log(“Threedom!”);

}

else

{

console.log(“I’m confused”);

}

for (var i = 0; i <= 4; i = i + 1)

{

console.log("Programming is awesome");

}

equivalent to the Banana

FOR i = 0 TO 4

DISPLAY "Programming is awesome"

ENDFOR

for (var i = 0; i <= 4; i = i + 1)

{

console.log("You are awesome!");

}

equivalent to the Banana

FOR I = 0 TO 4

DISPLAY "You are awesome!"

ENDFOR

Declares and initialises the

counter variable – in this

case, the counter is i and

it starts at zero.

Specifies the condition

under which the loop

continues to repeat – in this

case it keeps going WHILE

it's less or equal to 4.

What happens to the

counter variable every

time we repeat the loop –

in this case, it is

increased by 1.

for (var i = 0; i <= 4; i = i + 1)

{

console.log("Programming is awesome");

}

would more commonly be written

for (var i = 0; i < 5; i++)

{

console.log("Programming is awesome");

}

1. It would print the numbers
from 4 to 10

2. It would print the numbers
from 4 to 10 backward

3. It would print “i” 7 times

4. It would print “I” 6 times

5. There would be an error

1. 2. 3. 4. 5.

1%
6%

3%

13%

77%

for (var i = 10; i >= 4; i = i - 1)

{

console.log("i");

}

var i = 0;

while (i < 5)

{

console.log("You are awesome!");

i++;

}

equivalent to the Banana

SET i = 0;

WHILE i < 5

DISPLAY "You are awesome!"

i = i + 1;

ENDWHILE

var i = 0;

while (i < 5)

{

console.log("You are awesome!");

i++;

}

equivalent to the Banana

SET i = 0;

WHILE i < 5

DISPLAY "You are awesome!"

i = i + 1;

ENDWHILE
While the test condition

evaluates to true, these

statements repeatedly run.

The test condition specifies

the condition under which

the loop continues to

repeat – in this case it

keeps going WHILE the

variable i is less than 5.

 In our Banana, we've used repeat/until as our post-test

loop

 this means it tests the condition AFTER each repetition

 contrast while/endwhile, a pre-test loop, which tests the

condition BEFORE each repetition

 C-like languages do not have a direct equivalent to
repeat/until

 Instead, do/while can be used as a post-test loop

 There is one crucial difference, however…

var i = 0;

do

{

console.log("You are awesome");

i++;

} while (i != 5);

equivalent to the Banana

SET i = 0;

REPEAT

DISPLAY "You is awesome"

i = i + 1;

UNTIL i == 5

var i = 0;

do

{

console.log("You are awesome");

i++;

} while (i != 5);

equivalent to the Banana

SET i = 0;

REPEAT

DISPLAY "You is awesome"

i = i + 1;

UNTIL i == 5

While the test expression evaluates to true,

these statements while repeatedly run.

IMPORTANT: note the fundamental difference

between the REPEAT/UNTIL construct you

may have seen in Banana, and the C-like

DO/WHILE.

• REPEAT/UNTIL repeats until the final

condition is TRUE.

• So when it is true it stops!

• DO/WHILE repeats while the condition is

true

• So when it is true it repeats!

The test expression specifies the condition

under which the loop continues to repeat – in

this case it keeps going WHILE the variable i is

not equal to 5.

 Usually used in conditional statements e.g. IF or WHILE

var speed = 19;

if (speed >= 45)

{

console.log("Too fast");

}

else if (speed >= 25)

{

console.log("Just right!");

}

else

{

console.log("Too slow!");

}

What message

will be printed?

 Usually used in conditional statements e.g. IF or WHILE

var speed = 19;

if (speed >= 45) false

{

console.log("Too fast");

}

else if (speed >= 25) false

{

console.log("Just right!");

}

else

{

console.log("Too slow!");

}

 Usually used in conditional statements e.g. IF or WHILE

var speed = 35;

if (speed >= 45)

{

console.log("Too fast");

}

else if (speed >= 25)

{

console.log("Just right!");

}

else

{

console.log("Too slow!");

}

 Usually used in conditional statements e.g. IF or WHILE

var speed = 35;

if (speed >= 45)

{

console.log("Too fast");

}

else if (speed >= 25) true

{

console.log("Just right!");

}

else (else does not run if condition is true)

{

console.log("Too slow!");

}

 Usually used in conditional statements e.g. IF or WHILE

var x = 2;

while (x < 500)

{

console.log(x);

x = x * 2;

}

if (x > 510)

{

console.log("Final result was more than 510");

}

|| OR (one condition must be true)
&& AND (ALL conditions must be true)

 Use these to "join" relational operators together… e.g.

var number = prompt("Type a number");

if (number >=5 && number <= 10)

{

console.log("Number was between 5 and 10 inclusive");

}

else if (number > 10 || number < 1)

{

console.log("Number was outside the accepted range of 1-10");

}

else

{

console.log("Number was between 1 and 4");

}

 Use the ! to invert a boolean expression

 …if it's currently true, it becomes false

 …if currently false, it becomes true

 This is called "NOT"

var number = prompt("Type a number");

if (!(number >= 1 && number <= 10))

{

console.log("Number was outside 1-10");

}

 …assuming we typed 17…

var number = prompt("Type a number");

if (!(number >= 1 && number <= 10))

{

console.log("Number was outside 1-10");

}

 …assuming we typed 17…

var number = prompt("Type a number");

if (!(number >= 1 && number <= 10))

{ true && false

console.log("Number was outside 1-10");

}

 …assuming we typed 17…

var number = prompt("Type a number");

if (!(number >= 1 && number <= 10))

{ true && false

! (false)

console.log("Number was outside 1-10");

}

 …assuming we typed 17…

var number = prompt("Type a number");

if (!(number >= 1 && number <= 10))

{ true && false

! (false)

true

console.log("Number was outside 1-10");

}

 If statement

if (some condition)

{

do something…

}

else

{

do something else…

}

 If statement

var text = prompt("Type something");

if (text == "abc")

{

console.log("You typed abc");

}

else

{

console.log("You typed something else");

}

 If statement

var text = prompt("Type something");

if (text == "abc")

{

console.log("You typed abc");

}

else

{

console.log("You typed something else");

}

For Java'ers – no need for .equals to

test for string equality in Javascript

 Loops while a given condition is true

 do…while

do

{

..something to do..

} while (some condition)

 while

while (some condition)

{

..something to do..

}

do/while will ALWAYS

execute at least once

while, potentially, might

never execute at all (it

depends on the condition)

 So the FOR loop is basically a composite of different statements:

for (var count = 0; count < 10; count++)

{

console.log(count);

}

var count = 0;

while (count < 10)

{

console.log(count);

count++;

}

1. Seriously? Of course that
wouldn’t run. There’d be an
error.

2. It would print “X” 3 times

3. It would print “X” 4 times

4. It would print a little triangle of
“X”es, like this:

X
XX
XXX

1. 2. 3. 4.

6%

21%21%

52%

for (var i = “X”; i != “XXXX”; i = i + “X”)

{

console.log(“X”);

}

 Because Javascript is weakly typed it will try to make sense of
things if you mix different types of data:

var numberInAString = "27";

numberInAString = numberInAString – 7;

console.log(numberInAString);

 …prints 20 to the console

 numberInAString now contains a numeric value!

var numberInAString = "27";

numberInAString = numberInAString + 7;

console.log(numberInAString);

 …prints 277 to the console… WHY?

 If a variable is like a box, then an array is like a box with

compartments:

 Several ways you can declare an array in Javascript, but we

recommend:

var box = [];

 or, if you know what you want to put in the array

var box = ["words","go","in","the","array"];

…and so on

up to the

size of the

array…

var box = ["words","go","in","the","array"];

console.log(box[2]); // would print "in"

console.log(box[4]); // would print "array"

var box = [];

box[1] = "foo";

box[4] = "bar";

console.log(box[1]); // would print "foo"

console.log(box[4]); // would print "bar"

console.log(box[2]); // ??? – you tell me!

 Javascript arrays do not have to have their length specified

when declared - they will grow as necessary

 They will also add elements that contain undefined as

necessary

 You can get the length of an array by adding .length

var arr = [1,2,3,4];

console.log(arr.length); // prints 4

var arr2 = [];

console.log(arr.length); // prints 0

arr2[2] = "xyz";

console.log(arr.length); // prints 3 – why?

1. It would count from 0 to 4

2. It would print the word All 5 times

3. It would print the word Play 5 times

4. It would print out all the words in the array

5. There would be an error

1. 2. 3. 4. 5.

7% 6% 4%

77%

5%

 By now you should be able to compose this code yourself, but…

var stuff = ["All","work","and","no","play"];

for (var count = 0; count < stuff.length; count++)

{

console.log(stuff[count]);

}

 What will this do?

 Think about the grammar – what values

are in the various variables, what does
stuff.length result in?

 If we set up an array…

var fruits = ["Banana", "Orange", "Lemon", "Apple", "Mango"];

fruits[0] fruits[1] fruits[2] fruits[3] fruits[4]

 …we can use various methods to take subsets of the array

 slice

var citrus = fruits.slice(1,3);

 "give me everything starting at fruits[1] UP TO BUT NOT INCLUDING

fruits[3]"

 citrus would contain Orange and Lemon

 fruits is unchanged

 If we set up an array…

var fruits = ["Banana", "Orange", "Lemon", "Apple", "Mango"];

fruits[0] fruits[1] fruits[2] fruits[3] fruits[4]

fruits[-5] fruits[-4] fruits[-3] fruits[-2] fruits[-1]

 Use negative numbers with slice to select from the end of the

array:

var citrus = fruits.slice(-4,-2);

 "give me everything starting at the fourth from the right UP TO BUT NOT

INCLUDING the second from the right

 again, citrus would contain Orange and Lemon

 fruits is still unchanged

 If we set up an array…

var fruits = ["Banana", "Orange", "Lemon", "Apple", "Mango"];

fruits[0] fruits[1] fruits[2] fruits[3] fruits[4]

fruits[-5] fruits[-4] fruits[-3] fruits[-2] fruits[-1]

 If you slice without the second value, it will take everything

up to the end of the array

fruits.slice(3); // gives us Apple and Mango

fruits.slice(-1); // gives us Mango only

 If we set up an array…

var fruits = ["Banana", "Orange", "Lemon", "Apple", "Mango"];

fruits[0] fruits[1] fruits[2] fruits[3] fruits[4]

var whereIsTheLemon = fruits.indexOf("Lemon");

 gives us 2…

var needThisForBanoffeePie = fruits.indexOf("Banana");

 gives us 0

 so what is indexOf telling us?

 Lots of others…

Method Description

concat() Joins two or more arrays, and returns a copy of the joined arrays

indexOf() Search the array for an element and returns it's position

join() Joins all elements of an array into a string

lastIndexOf() Search the array for an element, starting at the end, and returns it's position

pop() Removes the last element of an array, and returns that element

push() Adds new elements to the end of an array, and returns the new length

reverse() Reverses the order of the elements in an array

shift() Removes the first element of an array, and returns that element

slice() Selects a part of an array, and returns the new array

sort() Sorts the elements of an array

splice() Adds/Removes elements from an array

toString() Converts an array to a string, and returns the result

unshift() Adds new elements to the beginning of an array, and returns the new length

valueOf() Returns the primitive value of an array

	

 W3Schools is a good reference when getting started:

 http://www.w3schools.com/jsref/jsref_obj_array.asp

http://www.w3schools.com/jsref/jsref_obj_array.asp

 You can use slice on a single string (a text value or variable)

rather than an array - it will give you the appropriate bit of the

string (known as a substring)

var name = "Paul Neve";

var surname = name.slice(5,9); // gives Neve

var surnameAlternative = name.slice(-4); // gives Neve

 substr is similar to slice, but the second value changes to be

the number of characters to take

var surname = name.substr(5,4); // gives Neve

 WARNING: don't use substring instead of substr – confusingly,

substring actually exists and is more like slice in its behaviour

 You can use charAt to take a single character out of a string:

var name = "Paul Neve";

var secondInitial = name.charAt(5); // gives N

var firstInAlphabet = name.charAt(1); // gives a

 You can convert a string to all upper or lower case:

var shouting = name.toUpperCase(); // gives PAUL NEVE

var poorGrammar = name.toLowerCase(); // gives paul neve

 Many others… again, check out W3Schools

 http://www.w3schools.com/jsref/jsref_obj_string.asp

http://www.w3schools.com/jsref/jsref_obj_string.asp

 The first rule of Javascript is that Java is not Javascript

 The second rule of Javascript is that Java is NOT

Javascript!

 That said… they are both C-like languages, so share many

similarities of grammar and syntax

 Javascript is usually used in conjunction with HTML (web)

pages, and any input/output to/from the user has to go

through such an HTML page

 In the early exercises, we'll introduce an artificial console

that you can print messages to and get typed input from the

user on, just so you can get used to the language before

having to worry about interactions with HTML

 Javascript is weakly typed – you don't have to specify what

kind of data is stored in your variables when you declare

them

 Declare variables with var

 Use the usual C-like base constructs for if, while,

do/while and for

 Arrays in Javascript are great – they can and will resize on

the fly

 Lots of functions to slice and dice arrays

 Also lots of functions to slice and dice strings (text)

