

 A function is

 like a mini program within a program

 a way of adding your own "commands" to a language

 a way of defining a set of instructions up front when you're likely to
need to do them several times within a larger program

 We use "functions" in everyday life

 Q: “How do I make a sandwich?"

 The answer might include statements like “slice bread, spread butter on
slices”

 What does slice mean? What does spread mean?

 ‘slice’ and ‘step’ are functions

 We explain how we do these things before we give the "main“ set of
instructions

 We can then reference them in the instructions

 Remember the turnRight function for Carol in Banana

function turnRight

for count = 1 to 3

call turnLeft

endfor

end function

 Carol didn’t know how to turn right as part of her standard

repetoire

 So we gave the steps for turning right up front – we defined them as

a function

 We can then call this function whenever we need to turn right

 To define a function, we specify brackets after the function

name:

function printMessage()

{

console.log("This is my message");

}

…then later in the program, we call it with…

printMessage();

 When we define a function, we specify brackets after the

function name:

function printMessage()

{

console.log("This is my message");

}

…then later in the program, we call it with…

printMessage(); brackets

 This would be the same as the Banana code

function printMessage

display "This is my message"

endfunction

…then later in the program, we call it with…

call printmessage

 Parameters allow us to “communicate” with the function

from the part of the code that calls the function

 Consider the sandwich example

 We might give an instruction like “Slice the bread”

 If slice was a function, then the bread is a parameter

 The parameter allows us to supply a value (or object) to the

function

 The function can then use the parameter as part of what it

does

 We put parameters between the brackets of our function declaration

function printMessage(numberOfTimes)

{

for (var count = 0; count < numberOfTimes; count++)

{

console.log("This is my message");

}

}

…then later in the program, we call the function with something like..

printMessage(10);

 The brackets are for any parameters the function might need

function printMessage(numberOfTimes)

{

for (var count = 0; count < numberOfTimes; count++)

{

console.log("This is my message");

}

}

…then later in the program, we call it with…

printMessage(10);

 Multiple parameters can be specified

function betterPrintMessage(numberOfTimes,message)

{

for (var count = 0; count < numberOfTimes; count++)

{

console.log(message);

}

}

…then later in the program, we call it with…

betterPrintMessage(10,"Hello there");

 Multiple parameters can be specified

function betterPrintMessage(numberOfTimes,message)

{

for (var count = 0; count < numberOfTimes; count++)

{

console.log(message);

}

}

…then later in the program, we call it with…

betterPrintMessage(10,"Hello there");

 Unlike languages like Java, Javascript doesn't enforce function

calls having the same number of parameters as the function

declaration

 If you call a function and one of the parameters is missing, the

special value undefined is placed into the parameter variable

function myTestFunction(myParam)

{

console.log(myParam);

}

// prints "Good morning"

myTestFunction("Good morning");

// prints "undefined"

myTestFunction();

 Unlike languages like Java, Javascript doesn't enforce function

calls having the same number of parameters as the function

declaration

 If you call a function and one of the parameters is missing, the

special value undefined is placed into the parameter variable

function myTestFunction(myParam)

{

console.log(myParam);

}

// prints "Good morning"

myTestFunction("Good morning");

// prints "undefined"

myTestFunction();

parameter in

function call

is not defined,

so the special

value undefined

gets passed to

the function

parameter

 You can detect for undefined

function myTestFunction(myParam)

{

if (myParam != undefined)

{

console.log(myParam);

}

else

{

console.log("You forgot the parameter!");

}

}

// prints "Good morning"

myTestFunction("Good morning");

// prints "You forgot the parameter!"

myTestFunction();

 or even

function myTestFunction(myParam)

{

if (myParam)

{

console.log(myParam);

}

else

{

console.log("You forgot the parameter!");

}

}

// prints "Good morning"

myTestFunction("Good morning");

// prints "You forgot the parameter!"

myTestFunction(false);

1. It would print the number 9 followed by the
number 3

2. It would print the number 3 followed by the
number 9

3. It would count from 0 to 9 then count from 0
to 3

4. It would count from 0 to 8 then count from 0
to 2

5. It would count from 0 to 12

6. It would count from 0 to 11

7. There would be an error

1. 2. 3. 4. 5. 6. 7.

3%
0%

12%

4%
0%0%

81%

function countPrint(howMany)

{

for (var count = 0; count < howMany; count++)

{

console.log(count);

}

}

countPrint(9);

countPrint(3);

1. orange/pear/undefined/
apple/undefined

2. apple/banana/undefined/
undefined/undefined

3. orange/pear/apple

4. apple/banana

5. 1/3/5/0/-1

6. There would be an error
1. 2. 3. 4. 5. 6.

84%

5%
2%

4%
2%2%

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

console.log(words[index]);

}

chooseWord(1);

chooseWord(3);

chooseWord(5);

chooseWord(0);

chooseWord(-1);

 Functions can also return a value

 THIS IS DIFFERENT TO PRINTING THE RESULT!

 THIS IS NOT THE SAME AS PRINTING THE RESULT!

 THIS IS DIFFERENT TO PRINTING THE RESULT!

 (yes, I am laboring the point here…!)

 Consider the sandwich example

 Consider the previous excerpt, slice the bread

 What do we get back after we have sliced the bread?

 Consider the sandwich example

 Consider the previous excerpt, slice the bread

 What do we get back after we have sliced the bread?

 So, the slices of bread that are the end result are like the return

value of the function slice

 We “called a function” on bread – i.e. we sliced it

 What we got back was the slices – the result of running the function

 We could write a function to return a specific word from an

array:

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

return(words[index]);

}

chooseWord(1);

var myWord = chooseWord(2);

console.log("My word was "+myWord);

 We could write a function to return a specific word from an
array:

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

return(word[index]);

}

chooseWord(1); // does nothing (visible, at least)

var myWord = chooseWord(2);

console.log("My word was "+myWord);

 We could write a function to return a specific word from an
array:

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

return(word[index]);

}

chooseWord(1); // does nothing (visible, at least)

var myWord = chooseWord(2);

console.log("My word was "+chooseWord(2));

 Consider our sandwich example again

 …”slice the bread”…

 If bread is a parameter to a function slice

 The resulting slices of bread are the what the function returns

 Thus the slice function has both a parameter and a return value

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

first line that runs

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

repeats 5 times

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

this…

…calls this function

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

this…

…calls this function

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

this…

Is the result here

 Functions can use parameters and return values to "communicate" with
each other
function getRandomNumber(max)

{

var num = Math.floor(Math.random()*(max+1));

return num;

}

function getRandomWord()

{

var words =["apple","orange","banana","pear","kiwi","peach","fig"];

var randomNo = getRandomNumber(words.length-1);

return words[randomNo];

}

for (var count = 0; count< 5; count++)

{

console.log(getRandomWord());

}

this…

Is the result of this

 Variables that are declared within functions are only visible

within the function…

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

var word = words[index];

}

chooseWord(2);

console.log(word);

 Variables that are declared within functions are only visible

within the function…

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

var word = words[index];

}

chooseWord(2);

console.log(word);
Will error here – the variable word cannot

be seen outside the function it was

declared in

 Variables that are declared within functions are only visible

within the function…

var word; // declare the variable outside function

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

word = words[index]; // note: no “var” keyword!

}

chooseWord(2);

console.log(word);

Works fine – word is declared

outside of the function, so is

visible both inside and outside the

function.

This is called a GLOBAL variable

 Global variables are frowned upon from a style perspective

 A return value would be a better way to do this…

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

word = words[index]; // note: no “var” keyword!

return word;

}

console.log(chooseWord(2));

Works fine – word is never accessed directly

outside the function – instead, we send it as our

return value

“REMEMBER THE GRAMMAR”

 Global variables are frowned upon from a style perspective

 A return value would be a better way to do this…

function chooseWord(index)

{

var words = ["apple","orange","banana","pear"];

word = words[index]; // note: no “var” keyword!

return word ;

}

console.log(chooseWord(2));

Works fine – word is never accessed directly

outside the function – instead, we send it as our

return value

“REMEMBER THE GRAMMAR”

1. 270

2. 100

3. 27

4. 10

5. undefined

6. There would

be an error

1. 2. 3. 4. 5. 6.

75%

0%
2%

12%

3%

8%

function foo(bar)

{

var woot = 10;

var woot = bar * woot;

return woot;

}

var woot = 27;

var bar = foo(woot);

console.log(bar);

1. 10

2. 21

3. 70

4. 7

5. 3

6.

7.

1. 2. 3. 4. 5. 6. 7.

6%
2%

90%

0%1%2%
0%

function foo(bar)

{

var woot = kerplunk(bar)

var woot = bar * woot;

return woot;

}

function kerplunk(foo)`

{

return foo+3;

}

var woot = 7;

var bar = foo(woot);

console.log(bar);

There would

be an error

Nothing

1. 12 followed by 24

2. 60 followed by 24

3. 5, 12 and then 24

4. 60 followed by an
error

5. 24 followed by an
error

6. 12 followed by an
error

1. 2. 3. 4. 5. 6.

3%

15%

44%

27%

10%

1%

var woot = 12;

function foo(bar)

{

var kerplunk = 24;

var woot = bar * woot;

}

foo(5);

console.log(woot);

console.log(kerplunk);

 Functions can appear in any order throughout your program

function funcOne()

{

console.log(“This is the first function”);

}

function funcTwo()

{

console.log(“This is the second function”);

}

funcOne();

funcTwo();

 Functions can appear in any order throughout your program

funcOne();

funcTwo();

function funcOne()

{

console.log(“This is the first function”);

}

function funcTwo()

{

console.log(“This is the second function”);

}

 Functions can appear in any order throughout your program

function funcOne()

{

console.log(“This is the first function”);

}

funcOne();

funcTwo();

function funcTwo()

{

console.log(“This is the second function”);

}

 Functions can appear in any order throughout your program

funcOne();

function funcOne()

{

console.log(“This is the first function”);

}

funcTwo();

function funcTwo()

{

console.log(“This is the second function”);

}

1. three/two/one

2. one/two/three

3. two/one/three

4. three/two/one/four

5. just four

6. just three

7. just two

8. just one

9. Nothing

10. There would be an error
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

3%

0%

89%

0% 0%

5%

0%0%1%2%

function one()

{

console.log("three");

}

function two()

{

console.log("one");

}

function three()

{

console.log("two");

}

function four()

{

three();

two()

one();

}

four();

 Functions can appear in any order throughout your program

 As a best practice style choice, use the following approach:

 Global variables

 Functions

 Then the main body of your code

 A function is like

 A mini program within a program

 A way of extending the capabilities of a programming language
by providing a means of describing how to do new “commands”

 A way of avoiding repetition within a program

 Function can accept parameters

 A parameter is a value that is sent to the function from the
calling code

 “slice bread with knife” – bread and knife are parameters

 Functions can have return values

 A return value goes back to the code that calls a function

 THIS IS NOT THE SAME AS PRINTING SOMETHING TO THE SCREEN

 The calling code can then use the return value

 “slice bread with knife” – the return value would be the bread slices
that resulted

 In Javascript, variable scope means that variables can only

be “seen” from within the function in which they are

declared

 Remember that when you use the var keyword, this

declares a variable

 If you want to use a variable throughout a program, declare it as

a global variable – i.e. not within a specific function

 Functions in Javascript can appear at any point within a

program

 But try to keep functions declarations at the top of your program

– this will help avoid confusion

 Don’t fall into the trap of having little loose bits of main body

code floating around function declarations…

