

 console.log to print stuff out

 prompt to get input from the user

 console.log to print stuff out

 prompt to get input from the user

it's a LIE!

 It is very, very rare for real-world Javascript code to ever use
console.log or prompt

 prompt doesn't always work in all browsers

 console.log doesn't actually get seen by the end-user unless they

go into the developer console in their browser

 Most real-world Javascript works in conjunction with HTML

pages

 The Javascript will manipulate elements in the HTML to change

the page that the user sees in the browser

 It will also read elements in the HTML (such as form fields) to

get user input from the browser

 Only Team Solo get taught HTML on this module

 The rest of you, we hope that you will either already know

HTML or will be able to pick it up as we go during this unit

 …you are degree level students doing a computing degree, after

all…

 However, you won’t be expected to compose original HTML as

part of this unit - we'll give you some "potted" HTML pages

 Your Javascript code will read and manipulate these "potted"

pages in order to interact with the user

 The document object model or DOM is a model that describes

the structure of an HTML page

 It describes where each HTML element is in relation to others,

and the overall page itself

 You can think of it as being like a tree

html

head

script

body

h1 img h1

html

head

script

body

h1 img h1

document.childNodes[0]

document.childNodes[0].childNodes[1]

document.childNodes[0].childNodes[1].childNodes[2]

document.childNodes[0].childNodes[1].childNodes[1]

html

head

script

body

h1 img h1

document.getElementsByTagName("h1")

document.getElementsByTagName("h1")[0]

h1 h1

document.getElementsByTagName("h1")[1]

html

head

script

body

h1 img h1

document.getElementsByTagName("h1")[1].innerHTML = "Boring here, isn't it?"

html

head

script

body

h1 img h1

document.getElementsByTagName("h1")[1].innerHTML = "Boring here, isn't it?"

html

head

script

body

h1 img h1

var myTargetElement = document.getElementsByTagName("h1")[1];

myTargetElement.innerHTML = "Boring here, isn't it?"

 Elements in HTML can be labeled with an ID attribute

 You can then use document.getElementById to access them

specifically, by this label

 Elements in HTML may be labeled with an ID attribute

 You can then use document.getElementById to access them

specifically, by this label

var oneToChange = document.getElementById("myTarget");

oneToChange.innerHTML = "Boring here, isn't it?";

or

document.getElementById("myTarget").innerHTML = "Boring here isn't it?"

var oneToChange = document.getElementById("myTarget");

oneToChange.innerHTML = "Boring here, isn't it?";

or

document.getElementById("myTarget").innerHTML = "Boring here isn't it?"

Boring here, isn't it?

 Each element can also have a class

 Unlike IDs, the class attribute can be shared among more

than one element, e.g. as in this HTML excerpt…

 We can target all elements of a specific class with
getElementsByClass

var firstYears = document.getElementsByClass("firstYear");

 This would target the elements highlighted and ONLY these elements:

 getElementsByClass returns an array* – not a single element

 So, the result will not be singular – you must either know

which element you're looking for, or iterate through to find

the correct one

var firstYears = document.getElementsByClass("firstYear");

console.log(firstYears[2].innerHTML);

* strictly speaking, it returns a

collection of elements – but you can

treat it like an array…

 getElementsByClass returns an array* – not a single element

 So, the result will not be singular – you must either know
which element you're looking for, or iterate through to find
the correct one

var firstYears = document.getElementsByClass("firstYear");

for (var i = 0; i < firstYears.length; i++)

{

var current = firstYears[i];

if (current.innerHTML.indexOf("Joe") != -1)

{

console.log(current.innerHTML);

}

}

* strictly speaking, it returns a

collection of elements – but you can

treat it like an array…

 Will give you all elements of a certain tag type

 document.getElementsByTagName("p")

 gives you all the paragraphs

 document.getElementsByTagName("h1")

 gives you all the top level headings

 document.getElementsByTagName("img")

 gives you all the images

 …and so on…!

 It doesn't matter how you "get" an element

 You can get an element with getElementById

 You can get a group of elements with getElementsByClass or

getElementsByTagName, and then extract a single one from the

collection

 If you have a "block" in your code that is a single HTML

element, you can read its innerHTML or any other attribute

that's valid for the given element

1. It would return all of the bold
text elements

2. It would return the element
containing the text really

3. It would return the element
containing the text black

4. It would return the string
really

5. It would return the string
black

6. It would print the text really

7. It would print the text black

8. Something else

1. 2. 3. 4. 5. 6. 7. 8.

5% 5%

63%

0%0%0%

27%

0%

function getBit()

{

var result = document.getElementsByTagName("b")[2];

return result;

}

<html>

…head element assumed here…

<body>

<p>The thing about Black Pudding that

makes it really interesting is that

when it's really good, even the white bits

in it are black.</p>

</body>

</html>

1. The first element containing the

text Fred (in the first paragraph)

2. The second element containing the

text Fred (in the second paragraph)

3. The string value Fred

4. The first element containing the

text Jane (in the first paragraph)

5. The second element containing the

text Jane (in the second paragraph)

6. The string value Jane

7. The first element containing the

text Susan (in the first paragraph)

8. The second element containing the

text Susan (in the second

paragraph)

9. The string value Susan

10. Something else

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1% 2%
4%

0%

4%

71%

5%

1%

8%

5%

function getBit() {

var result = document.getElementsByTagName("p")[1];

result = result.childNodes[3];

return result.innerHTML;

}

<html>

…head element assumed here…

<body>

<p>It's complicated because Fred is

married to Jane but having an affair

with Susan.</p>

<p>What Fred didn't know was that Jane was

also having an affair with

Susan!</p>

</body>

</html>

function getBit() {

var result = document.getElementsByTagName("p")[1];

result = result.getChildNodes[3];

return result.innerHTML;

}

<html>

…head element assumed here…

<body>

<p> It's complicated because Fred is

married to Jane but having an affair

with Susan. </p>

<p> What Fred didn't know was that Jane was

also having an affair with

Susan ! </p>

</body>

</html>

function getBit() {

var result = document.getElementsByTagName("p")[1];

result = result.getChildNodes[3];

return result.innerHTML;

}

<html>

…head element assumed here…

<body>

<p> It's complicated because Fred is

married to Jane but having an affair

with Susan. </p>

<p> What Fred didn't know was that Jane was

also having an affair with

Susan ! </p>

</body>

</html>

1. The text First of all would change to repeatedly

2. The word hammer would change to repeatedly

3. The word sure would change to repeatedly

4. The word big would change to repeatedly

5. The word softly would change to repeatedly

6. The word swiftly would change to repeatedly

7. Something else

1. 2. 3. 4. 5. 6. 7.

0% 0% 0% 0%

100%

0%0%

function getBit() {

var target = document.getElementsByClass("content");

target[1].childNodes[3].innerHTML = "repeatedly";

}

<html>

…head element assumed here…

<body>

<h1>Instructions</h1>

<p class="content">First of all, get a hammer.</p>

<p class="note">(make sure it's a big one!)</p>

<p class="content">Then, apply it softly and

swiftly to the student's head.</p>

</body>

</html>

 In HTML5, some new Javascript commands came in that

allow us to target DOM elements using CSS selectors

 document.querySelector

 gets a single element based on the CSS selector you supply

 document.querySelectorAll

 gets a collection of elements based on the CSS selector you

supply

 …think of it like giving you an array of elements

 you could iterate through this "array" using a for loop and .length to

find out how many were returned

 CSS selectors are a powerful way to navigate the DOM

 You can select a specific type of element by specifying it

 e.g. specifying p would give you all paragraphs, specifying img

would give you all images…

 You can specify elements with a certain class by using a full stop in

front of the class name

 e.g. .content would give you all elements with a class of content

 …note that it wouldn't matter what element type these were! If you had a

paragraph, a div and an image with a class of content then this selector

would give you them all!

 You can specify elements with a certain ID by using a hash sign in

front of the ID name

 e.g. #headline would give you the element with the ID headline

 …the element type would be irrelevant

 …remember that IDs are unique. So selecting by ID will only ever give a

single result

 You can also nest CSS selectors

 p.content

 …would give you all paragraphs with a class of content

 div#footer

 …would give you the single div with an ID of footer

 (why only a single div?)

 div p

 …would give you all paragraphs that are inside a div (but not any other

paragraphs)

 div>p

 …would give you all paragraphs that are direct descendents of a div

(but not any other paragraphs)

 div#footer p.contact a

 …would give you all links inside any paragraph element with a class of

contact that is inside a div of ID footer

HTML

(we'll take the structural stuff

as read)

<body>

<div id="foo">Hello</div>

<div class="bar">There</div>

<p class="bar">CSS</p>

<div class="bar">

<p class="woo">selectors</p>

<p id="yay">are</p>

<p>great</p>

</div>

</body>

Javascript

var p = document.querySelector("div#foo");

console.log(p.innerHTML);

var x = document.querySelector("p#yay");

console.log(x.innerHTML);

var y = document.querySelector("div.bar p.woo");

console.log(y.innerHTML);

var z = document.querySelector("p.woo");

console.log(z.innerHTML);

p.innerHTML = "Goodbye";

HTML

(we'll take the structural stuff

as read)

<body>

<div id="foo">Hello</div>

<div class="bar">There</div>

<p class="bar">CSS</p>

<div class="bar">

<p class="woo">selectors</p>

<p id="yay">are</p>

<p>great</p>

</div>

</body>

Javascript

var p = document.querySelectorAll("p");

for (var i = 0; i < p.length; i++)

{

console.log(p[i].innerHTML);

}

p[3].innerHTML = "rubbish";

var x = document.querySelectorAll(".bar");

console.log(x[1].innerHTML);

 You can change the src attribute on an image element to

change what picture gets displayed

document.getElementById("cat").src =

"http://fetlar.kingston.ac.uk/dog.jpg";

 You can change the src attribute on an image element to

change what picture gets displayed

document.getElementById("cat").src =

"http://fetlar.kingston.ac.uk/dog.jpg";

 You can change the src attribute on an image element to

change what picture gets displayed

document.getElementById("cat").src =

"http://fetlar.kingston.ac.uk/dog.jpg";

 CSS styles can be applied to all HTML elements with a specific

class attribute

 So in this example, the page when viewed in the browser would

look like…

 CSS styles can be applied to all HTML elements with a specific

class attribute

 So in this example, the page when viewed in the browser would

look like…

 You can modify the class in your Javascript code…

document.getElementsByTagName("p")[0].className = "error";

 You can modify the class in your Javascript code…

document.getElementsByTagName("p")[0].className = "error";

 If there's not a class that fits the style you want, you can

specify styles directly, e.g.

 W3schools has a good list of all of these:

 http://www.w3schools.com/jsref/dom_obj_style.asp

document.getElementsByTagName("p")[0].style.color = "green";

 Input elements let the user interact and type data into an

HTML page once it's been rendered in the browser

 You can read what the user types in Javascript with the
.value property on an input element

var firstname = document.getElementById("givenname").value;

var surname = document.getElementById("familyname").value;

Paul

Neve

var firstname = document.getElementById("givenname").value;

Paul

Neve

var firstname = document.getElementById("givenname").value;

Paul

Neve

var firstname = document.getElementById("givenname").value;

Paul

var firstname = document.getElementById("givenname").value;

Paul

Neve

 Can also set an input element's value, too:
document.getElementById("familyname").value = "Smith";

var firstname = document.getElementById("givenname").value;

Paul

Neve

 Can also set an input element's value, too:
document.getElementById("familyname").value = "Smith";

 Note that value ONLY works on input elements – i.e.
things that the end user can interact with and change

 For other elements (e.g. <P>, <DIV>, <H1> etc) use
innerHTML to change them from code

Smith

1. The first input element would be
filled in with the text k12345

2. The second input element would
be filled in with the text k12345

3. The first input element would be
filled in with the text k12345

4. The second input element would
be filled in with the text k12345

5. The first input element would be
filled in with the text k54321

6. The second input element would
be filled in with the text k54321

7. The first input element would be
filled in with the text k54321

8. The second input element would
be filled in with the text k12345

9. The second paragraph would be
wiped out and replaced with the
text Kaboom

10. Something else

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

5%
6%

0% 0%

9%

48%

0%

9%

2%

21%

function doStuff() {

var target = document.getElementById("kno");

target.innerHTML = "k12345";

target.value = "k54321";

var target2 = document.querySelectorAll("p")[1];

target2.innerHTML = "Kaboom";

}

<html>

…head element assumed here…

<body>

<p>K-Number: <input id="kno" size="10"/></p>

<p>Name: <input id="name" size="50"/></p>

</body>

</html>

(select all options that are valid!)

 Javascript is primarily used as a means of adding
interactivity to web pages

 In this context, Javascript programs do not “print” output to
a “screen”, or get input (directly) from a user

 They interact with web pages

 They can read and modify HTML elements on these web pages

 More accurately, they can read and modify elements in the
document object model or DOM

 The DOM is the model of the page that the web browser
builds up from the HTML

 Javascript programs “display” output by modifying elements
in the DOM

 Javascript programs get “input” from a user by reading
elements from the DOM – usually form elements like <input>
or <textarea>

