

 Up until now all of our programs have a had a start, a middle,

and an end

 They start at the first line of code that isn’t part of a function

 Each line is executed in turn

 Program flow might be re-routed because of the repetition in loops,

or calls to functions…

 …but once it reaches the final line, the program ends

 Most Javascript programs in the real world do NOT work like

the ones we’ve written so far

 Most Javascript programs are event driven

 Look at the video below:

 http://www.youtube.com/watch?v=sCQcPEcYL9g

http://www.youtube.com/watch?v=sCQcPEcYL9g

 If we say the cat was a program…

 An "event" took place

 (the cat was surprised by the other cat)

 The cat's "program flow" was interrupted by the event

 (it stopped mooching about and sniffing the grass)

 As a response to the event the cat executed a different "function"

 (it turned around and chased the other cat away!)

 In Javascript, events can happen on any of the HTML element
in the DOM

 A button might be clicked

 (in fact most elements can be clicked)

 An input element might change

 You can specify that a particular function should be run when
an event occurs

 The program will stop whatever it’s doing when the event occurs
and perform the specified function instead

 (just like the cat stopped doing what it was doing and started a new
"function"!)

 When the function finishes, program flow returns to wherever it was
when the event interrupted proceedings

HTML

<button id="button1">click here for Ringo pic 1</button>
<button id="button2">click here for Ringo pic 2</button>

Javascript
function ringo1()
{
document.getElementById("ringo").src = "http://fetlar.kingston.ac.uk/ringo.jpg";

}

function ringo2()
{
document.getElementById("ringo").src = "http://fetlar.kingston.ac.uk/anotherRingo.jpg";

}

document.getElementById("button1").onclick = ringo1;
document.getElementById("button2").onclick = ringo2;

HTML

<button id="button1">click here for Ringo pic 1</button>
<button id="button2">click here for Ringo pic 2</button>

Javascript
function ringo1()
{
document.getElementById("ringo").src = "http://fetlar.kingston.ac.uk/ringo.jpg";

}

function ringo2()
{
document.getElementById("ringo").src = "http://fetlar.kingston.ac.uk/anotherRingo.jpg";

}

document.getElementById("button1").onclick = ringo1;
document.getElementById("button2").onclick = ringo2;

 When we assign a function to fire when an event occurs on an

element, this is called binding an event

 We do this in Javascript by setting the onclick property

 document.getElementById("button1").onclick = ringo1;

 When we assign a function to fire when an event occurs on an

element, this is called binding an event

 Our example did this by setting the onclick property

 document.getElementById("button1") .onclick = ringo1;

The highlighted part is the element we’re binding the event to

REMEMBER YOUR GRAMMAR! You can get the element any way you

like! You might use getElementsByTagName, or some other means

of navigating the DOM – or even specify a variable name here, if

you’ve assigned an element to a variable

 When we assign a function to fire when an event occurs on an

element, this is called binding an event

 Our example did this by setting the onclick property

 document.getElementById("button1"). onclick = ringo1;

This highlighted part is the event

that we’re binding – i.e. what has to

happen for the function to run. So in

this case, we're saying something's

going to happen when this element is

clicked.

 When we assign a function to fire when an event occurs on an

element, this is called binding an event

 Our example did this by setting the onclick property

 document.getElementById("button1").onclick = ringo1 ;

This part specifies what will happen when

the event takes place. This is a function

name – so we're saying that when this

event is clicked, the function ringo1

should be called.

 When we assign a function to fire when an event occurs on an

element, this is called binding an event

 Our example did this by setting the onclick property

 document.getElementById("button1").onclick = ringo1;

 We set onclick on the element from Javascript code, but you

can also specify it directly in the HTML markup:

 <button id="button1“ onclick=“ringo1()”>click here for Ringo pic

1</button>

 However, this is frowned upon by purists these days…

 ..and you’re not allowed to alter the HTML markup in your

exercises, anyway…

Event Description

onclick Occurs when an element is clicked

ondblclick Occurs when an element is double-

clicked

onmouseover Occurs when the mouse pointer moves

over a particular element

onmouseout Occurs when the mouse points moves

off of a particular element

onchange Occurs when a form element (e.g. an

<input> element) is changed

See http://www.w3schools.com/jsref/dom_obj_event.asp for more.

http://www.w3schools.com/jsref/dom_obj_event.asp

 The keyword this allows us to refer to the element
on which an event occurred

HTML

<button id="firstbutton">First button</button>

<button id="secondbutton">Second button</button>

Javascript

function click()

{

alert(this.innerHTML+” was clicked”);

}

document.getElementById("firstbutton").onclick = click;

document.getElementById("secondbutton").onclick = click;

 The keyword this allows us to refer to the element
on which an event occurred

HTML

<button id="firstbutton">First button</button>

<button id="secondbutton">Second button</button>

Javascript

function click()

{

alert(this.innerHTML+” was clicked”);

}

document.getElementById("firstbutton").onclick = click;

document.getElementById("secondbutton").onclick = click;

 The keyword this allows us to refer to the element
on which an event occurred

HTML

<button id="firstbutton">First button</button>

<button id="secondbutton">Second button</button>

Javascript

function click()

{

alert(this .innerHTML+” was clicked”);

}

document.getElementById("firstbutton").onclick = click;

document.getElementById("secondbutton").onclick = click;

• If it was the button with ID firstbutton that was
clicked, then this will contain that HTML element

• If it was the button with ID secondbutton that was
clicked, then this will contain that HTML element

 The keyword this allows us to refer to the element
on which an event occurred

HTML

<button id="firstbutton">First button</button>

<button id="secondbutton">Second button</button>

Javascript

function click()

{

alert(this. innerHTML +” was clicked”);

}

document.getElementById("firstbutton").onclick = click;

document.getElementById("secondbutton").onclick = click;

• Because this will contain an HTML element from

the DOM, we can use any properties – e.g.

innerHTML - that we would normally be able to use

with our elements

 A Javascript event is an object in its own right

 This object has properties that we can read to find out more

about the event, e.g.

 Was the SHIFT key pressed?

 Was the ALT key pressed?

 Was the CONTROL key pressed?

 Was the META key pressed?

 (COMMAND or ⌘ on a Mac)

 (the Windows key on PCs)

 Where was the mouse on the browser page (X position/Y

position?)

 Where was the mouse on the screen?

 If we are going to need to read the event properties from the
function that gets called, we need to do our binding slightly
differently:

document.getElementById("someElement").onclick = function(event)

{

handleClick(event);

}

function handleClick(event)

{

if (event.shiftKey == 1)

{

alert("The shift key was pressed when you clicked!");

}

else

{

alert("The shift key was NOT pressed when you clicked!");

}

}

 If we are going to need to read the event properties from the
function that gets called, we need to do our binding slightly
differently:

document.getElementById("someElement").onclick = function(event)

{

handleClick(event);

}

function handleClick(event)

{

if (event.shiftKey == 1)

{

alert("The shift key was pressed when you clicked!");

}

else

{

alert("The shift key was NOT pressed when you clicked!");

}

}

• If we want to read the event in the function

that gets called when the event takes place,

we need to pass it as a parameter.

• Because we can't specify parameters when we

use the shorter way to bind an event, we

need to use this longer form

• The instructions within the code block

(between the curly brackets) are what gets

run when the event takes place

• So in this case, when the onclick event

happens, it runs the code handleClick(event)
• This calls our function handleClick with a

single parameter – the event itself

 If we are going to need to read the event properties from the
function that gets called, we need to do our binding slightly
differently:

document.getElementById("someElement").onclick = function(event)

{

handleClick(event);

}

function handleClick(event)

{

if (event.shiftKey == 1)

{

alert("The shift key was pressed when you clicked!");

}

else

{

alert("The shift key was NOT pressed when you clicked!");

}

}

• The event is passed as a

parameter to our function

 If we are going to need to read the event properties from the
function that gets called, we need to do our binding slightly
differently:

document.getElementById("someElement").onclick = function(event)

{

handleClick(event);

}

function handleClick(event)

{

if (event.shiftKey)

{

alert("The shift key was pressed when you clicked!");

}

else

{

alert("The shift key was NOT pressed when you clicked!");

}

}

• We can then

read the event

properties from

within our

function

• event.shiftKey returns a

boolean – true or false –

depending on whether the

shift key is pressed at the

time of the event

Property name Description

altKey Gives true if the ALT key is pressed, false if it is not

shiftKey Gives true if the SHIFT key is pressed, false if it is not

ctrlKey Gives true if the CONTROL key is pressed, false if not

metaKey Gives true if the meta key is pressed, false if it is not (see a couple of

slides back for what this key is)

button Returns which mouse button was pressed:

• 0 for the default button (usually the left)

• 1 for the middle button (if your mouse has three buttons – the scroll

wheel button can count here)

• 2 for the secondary button (usually the right)

screenX Gives the X coordinate on the screen where the mouse was when the

event took place

screenY Gives the Y coordinate on the screen where the mouse was when the

event took place

clientX Gives the X coordinate within the browser window where the mouse was

when the event took place

clientY Gives the Y coordinate within the browser window where the mouse was

when the event took place

 In many respects, you can think of an event driven program

as being like an infinite loop

document.getElementById("someElement").onclick = sayHello;

function sayHello()

{

alert("Hello!");

}

 This program would run forever

 Each time the user clicked, it'd say "Hello"

 so the user is the thing that makes the "loop" repeat

 We are now going to work through a simple example

 We will look at

 How a combination of an HTML page and Javascript code is

actually constructed in a real-world scenario

 How the HTML page specifies the associated Javascript

 Different approaches for binding events

 Different approaches for handling events

 Using "this"

 Available at

 http://nooblab.kingston.ac.uk/NoobLab/contents/paulneve.com

/programming1/js4-supplement

http://nooblab.kingston.ac.uk/NoobLab/contents/paulneve.com/programming1/js4-supplement

1. Waiting…

2. Click me

3. Ouch!

4. Nothing

5. Waiting…Click me

6. Waiting…Ouch!

7. Click meOuch!

8. Something else or there
would be an error

1. 2. 3. 4. 5. 6. 7. 8.

63%

6%

1% 0%1%

22%

1%

7%

<div id="output">Waiting…</div>

<button id="input">Click me

function handleClick()

{

var a = document.getElementById("output");

var b = document.getElementById("input");

a.innerHTML = a.innerHTML + "Ouch!";

}

document.getElementById("input").onclick = handleClick;

1. Waiting…

2. Click me

3. Ouch!

4. Nothing

5. Waiting…Click me

6. Waiting…Ouch!

7. Click meOuch!

8. Something else or there
would be an error

1. 2. 3. 4. 5. 6. 7. 8.

5% 4%
1% 0%1%

89%

0%0%

<div id="output">Waiting…</div>

<button id="input">Click me

function handleClick()

{

var a = document.getElementById("output");

var b = document.getElementById("input");

a.innerHTML = a.innerHTML + "Ouch!";

}

document.getElementById("input").onclick = handleClick;

1. The button
labelled 17

2. The button
labelled 31

3. The button
labelled 22

4. Any of them

5. You could
click them all
until the cows
came home
and that text
would never
appear

1. 2. 3. 4. 5.

2%
5%

3%

63%

27%

<div id="output">Waiting…</div>

<button id="input1">17

<button id="input2">31

<button id="input3">22

function handleClick()

{

var a = document.getElementById("output");

if (this.innerHTML.indexOf("2") != -1)

{

a.innerHTML = "You guessed correctly!";

}

}

for (var count = 1; count <= 3; count++)

{

var b = document.getElementById("input"+count);

b.onclick = handleClick;

}

1. Waiting…

2. Click me

3. Ouch!

4. Nothing

5. Waiting…Click me

6. Waiting…Ouch!

7. Click meOuch!

8. Something else or there
would be an error

1. 2. 3. 4. 5. 6. 7. 8.

3% 2%

11%

2%

78%

2%1%1%

<div id="output">Waiting…</div>

<button id="input">Click me

function handleClick()

{

var a = document.getElementById("output");

var b = document.getElementById("input");

a.innerHTML = this.innerHTML + "Ouch!";

}

document.getElementById("input").onclick = handleClick;

 Event driven programming involves defining functions that

run when and only when a certain event happens

 e.g. click, mouseDown, mouseUp, etc

 An event driven program might run forever

 It will sit there and potentially do nothing until an event takes

place

 When an event takes place on an element in the DOM, whatever

function has been bound to the event/element will run

 this allow you to reference the element upon which the

event took place from within the bound function

