

 Think back to Carol, and when you were making her make

decisions…

 …you used a variety of blocks in conjunction with IF blocks,

WHILE blocks and REPEAT/UNTIL blocks…

 Think back to Carol, and when you were making her make

decisions…

 …you used a variety of blocks in conjunction with IF blocks,

WHILE blocks and REPEAT/UNTIL blocks…

 Think about how you might have used one of these blocks in

the past…

 Think about how you might have used one of these blocks in

the past…

If the answer to this is YES…

…do this

While the answer to

this is YES…

…do this

 The blocks you used in conjunction with your IF, WHILE and

REPEAT/UNTIL loops were essentially questions with a YES or

NO answer

 More accurately, they were statements that could be TRUE

or FALSE

 Anything that results in a true or

false answer can be said to have a

boolean value

A. The sky is purple

with orange polka

dots

B. 2 + 2

C. Move forward six

squares

D.

A. B. C. D.

0% 0%0%0%

 Our Carol boolean functions were pretty simple – e.g. slap

them on an IF statement, job done!

 In "real world" programming, however, you will often need to

compare things and use the result of the comparison for the

basis of your decision

 For example

 is the player's score more than the current high score?

 is the current temperature less than the thermostat setting?

 is the password that's been typed equal to the user's actual

password?

 To compare things with each other, you use the relational

operator block

 Look in the Comparisons menu for the

block

 The relational operator block looks very similar to the

calculation block

 This is not by accident! The relational operator DOES

perform a calculation – one which will result in a TRUE or

FALSE (i.e. a boolean) result

 (It also looks similar to the logical operator block which is

also in the Comparisons menu and which we'll discuss later – but in the

meantime, do not confuse the two!)

 As with the maths block, you can compare any two things

that you like and that will fit in the two "holes"

 as always… if the block fits, you're good to go!

 You could compare

 Two numbers

 Two variables

 A number and a variable

 A variable and the result of a calculation block

 note that the calculation block would need its own "holes" filled in!

 We'll explain it with an example:

 We'll explain it with an example:

If the answer to this is

YES…

or, another way of putting

it: if this is TRUE…

…then do this

 A more complex example:

 == equal to (note DOUBLE equals sign..!)

 != not equal to

 > greater than

 < less than

 >= greater than or equal to

 <= less than or equal to

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

< 50

> 50

< 18

> 18

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

< 50

> 50

< 18

> 18

TRUE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

< 50

> 50

< 18

> 18

TRUE

FALSE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

< 50

> 50

< 18

> 18

TRUE

FALSE

FALSE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

< 50

> 50

< 18

> 18

TRUE

FALSE

FALSE

TRUE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

FALSE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

FALSE

FALSE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

FALSE

FALSE

FALSE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

FALSE

FALSE

FALSE

TRUE

 You are the judge! Assuming that we've created a variable

and set its value thus:

 What will the boolean value (true or false) be for these

expressions?

==

!=

<

>

<=

>=

TRUE

FALSE

FALSE

FALSE

TRUE

TRUE

 Consider the code for this block

 The code equivalent would be

set age = 21

 Now consider the code for this IF block

 The code equivalent would be

if (age == 21)

display "That's a good age!"

endif

 Why the single equals in the set and the double in the if?

 There is a difference between
single and double equals

 Single equals means make the thing on the left equal to the thing
on the right

 Double equals means is the thing on the left equal to the thing on
the right?

 So, a rule of thumb is

 if you're setting something, use single equals

 if you're making a decision, use double equals

 This will be important when we turn off the blocks and you have to
write text-based code!

 "S for Setting and Single equals,

 D for Decisions and Double equals"

 Sometimes, you may need to combine several conditions

together

 If the temperature is more than the thermostat setting OR the

person has turned the central heating off, turn off the radiator

 If the username typed in AND the password typed in matches the

user's registered details, allow access to the bank account

 How about, if the age is between 16 and 18 (e.g. for a college

student travelcard?)

 i.e. if the age is more than or equal to 16 AND less than or equal to 18

 Or more correctly

 If the age is more than or equal to 16 AND the age is less than or equal

to 18

 This is where logical operators come in

 Look in the Comparisons menu

 Each hole in the block can be filled with any block or

combination of linked blocks that result in a boolean value

(i.e. any combination that results in either TRUE or FALSE)

 NB. Try not to mix up this block with the logical operator

block !

 Sticking with the example of the

college student travelcard…

 if the age is between 16 and 18 (e.g. for a college student

travelcard?)

 i.e. if the age is more than or equal to 16 AND less than or equal to 18

 So, you might create two relational blocks to check for the

two conditions:

 Both of these conditions result in a boolean value – either

TRUE or FALSE

 Therefore, these conditions will fit in the "holes" of the

logical operator block

You can clip anything that results

in a boolean into the holes in the

logical operator block

So for our college travelcard example, we might end up

with something like

 If you use AND, both sides of the logical operator must be

true

 If you use OR, one side of the logical operator must be true

 Example scenario 1:

 If the gender is female AND the age is more than 18…

 Example scenario 2:

 If the gender is female OR the age is more than 18…

 Test data:

 Kevin, male, age 27 Basil, male, age 12

 Susan, female, age 21 Robert, male, age 35

 Jill, female, age 14 Alison, female, age 37

 The moral of the story:

 Don't mix up your ANDs and your ORs – you could get yourself into

serious trouble 

 Note the text symbols for AND and OR

 && AND

 || OR

 | is called the pipe symbol – on British keyboards, it's usually on the

key next to the left shift key with the backslash symbol, and you'll

need to press shift to get it

A. Keep on being a
wage slave

B. Go and collect your
pension A. B.

0%0%

 The logical operator block itself results in a boolean TRUE or

FALSE

 Let's say AGE was 17…

TRUE and TRUE

= TRUE

 So, you can place a logical operator into one of the holes of

another logical operator to make "monster" ones just as we

did with the calculation operator previously

versus

The top version is more

efficient, although the bottom

version might be preferable in

some cases, because it might

be easier to read/understand

(even if there is some

duplication)

versus

The top version is more

efficient, although the bottom

version might be preferable in

some cases, because it might

be easier to read/understand

(even if there is some

duplication)

Here, the OR operator lets us combine the

two discrete conditions

 The NOT operator takes a boolean value and

reverses it

 if it was originally TRUE, it makes it FALSE

 if it was originally FALSE, it makes it TRUE

A. 1

B. 10

C. 6

D. 5
1 10 6 5

0% 0%0%0%

 When we worked with Carol we wrote functions for things

that had to be done often within a given context

 e.g. "turn right", "move until blocked", "move 4 spaces" etc

 Programs for the real world are no different

 You will often need functions in real world programs too

 Let's go back to the example from a while back where we

calculated ages in dog years

 7 dog years is 1 human year – so to get an age in dog years we

multiply it by 7

 So consider the following program, which makes use of a
function to calculate and display the dog years:

 What about if we want to change the age?

 What about if we want to give a different age every time we
call the function?

 Parameters let us send information into the function from

outside

 So, in our example, we could give the age as a parameter

 To specify that a function accepts parameter(s), click the

star at the top of the function block

Drag this… …into here

 Click on the on the right hand side and type to give your

parameter a sensible name

 In our case, we are going to "transmit" the age of the person

into the function – so age seems like a good idea for a name!

 Note how the top of the function block changes to indicate

that there's a parameter on our function

 Here's a full version of our previous function using a

parameter for the age

 Note that we don't have to declare age as a variable – we

can use parameters in the same way as we do variables for

the duration of the function

 When a function has a

parameter, you'll notice that the

block for calling it changes shape slightly:

 Each parameter will be listed with a slot to clip on another

block

 You must clip something to each parameter slot

 Whatever you clip against a parameter, when the function is

run the parameter will contain that value

 For example:

 Remember: if the block fits, you can use it! 

whatever is

in here

…gets sent

to here

 A function parameter allows the

bit of code that calls that function

to also send some addition data into the function

This has nothing to

do with getting input

from the keyboard!

 A function parameter allows the

bit of code that calls that function

to also send some addition data into the function

This has nothing to do

with getting input from

the keyboard!
 If you have an exercise that asks you to write a

function that takes two parameters, and you are using

the GET block in it, you probably have misunderstood

the exercise…

 Return values are the "opposite" of parameters

 Just as a parameter lets you send a value into a function, a

return value lets you send a value back from the function

 THIS IS VERY VERY DIFFERENT FROM PRINTING THE RESULT

TO THE SCREEN!

 Return values are the "opposite" of parameters

 Just as a parameter lets you send a value into a function, a

return value lets you send a value back from the function

THIS IS VERY VERY

DIFFERENT FROM

PRINTING THE RESULT TO

THE SCREEN!

 From Functions, choose this block:

 This function block works exactly like the one we've been

using previously:

 Click the text and type to give the function a

name

 Clip the blocks you want to happen when the function is called

inside the function block

 BUT – you also need to clip something onto the return slot

 Assuming this is a complete program, what would be printed

to the screen? Why?

 Assuming this is a complete program, what would be printed

to the screen? Why?

 NOTHING IS PRINTED!

 The function is never called!

 Also – do you see a display block anywhere in that code?!

 What would be printed to the screen? Why?

 What would be printed to the screen? Why?

 The value that gets returned by the function gets used by

the display block in the main body

 Again: if the block fits…!

 What would be printed to the screen? Why?

 What would be in the result variable?

 What would be printed to the screen? Why?

 What would be in the result variable?

 NOTHING would be printed – again, do you see a display
block anywhere?

 result would contain 4

A. 18

B. 19

C. 17

D. 11
18 19 17 11

0% 0%0%0%

 Say we wanted to examine the number of dog years the user

was in our previous example…

 …say we wanted to check whether they'd still be alive or

whether they'd have popped their clogs by now if they were

a dog!

 We might have some

code like this…

 But what would we put

in the blank here? How

would we get the result

out of the function?

 We would need to not only use a parameter in our function,

but also a return value

 So, our function might look like this

 Note that our function doesn't print anything – all it does is

calculate the result and send it back

 The responsibility for doing something with that result lies

with whatever code calls the function

 In fact we could even write our function like this

 Remember – "if the block fits…"

 All we want our function to do is send back the age in dog

years – i.e. multiply it by 7

 The calculation block results in a single number, we want to

return a single number – why bother creating another

variable? Just clip the calculation block onto the return slot!

Remember – "if

the block fits"…!

 We can debate which is more "efficient"…

 The solution on the previous page doesn't use an additional
variable

 The solution on this page is perhaps easier to read

function dog_years(age)

return age * 7

endfunction

display "Enter your age"

get humanAge

display "Your age in dog years is"

set dogage = resultof dog_years(humanAge)

display dogage

if (dogage > 77)

display "You would be a dead dog :-("

endif

function dog_years(age)

return age * 7

endfunction

display "Enter your age"

get humanAge

display "Your age in dog years is"

set dogage = resultof dog_years(humanAge)

display dogage

if (dogage > 77)

display "You would be a dead dog :-("

endif

Note the format of the return statement

function dog_years(age)

return age * 7;

endfunction

display "Enter your age"

get humanAge

display "Your age in dog years is"

set dogage = resultof dog_years(humanAge)

display dogage

if (dogage > 77)

display "You would be a dead dog :-("

endif

Note how we use the
resultof statement

here. This both calls

the function and

specifies that the

result that is returned

will be used as the

value that (in this

case) gets put into

the variable

 A boolean value is a value that can be either true or false

 (Our Carol functions like "Carol is blocked?" produced boolean

values…)

 Relational operators let us compare things

 e.g. are they equal? Is one greater than other?

 A relational operator also gives back a boolean TRUE or

FALSE

 When we use the conditional programming blocks like IF,

WHILE or REPEAT/UNTIL, the block expects a boolean value

 Thus we can use relational operators together with

conditional blocks to make decisions in our programs

 Logical operators let us chain two boolean blocks together

(such as the relational operator block)

 The AND logical operator is TRUE if both sides of the

expression are true

 The OR logical operator is TRUE if one side or both sides of

the expression are true

 NOT reverses a boolean value

 The logical operator block itself yields a boolean value - so

you can nest them together to make "monster" blocks

 Functions can take parameters and return a value

 Parameters let you send data into the function

 A return value lets you send data out of the function back to

whatever called it

 DON'T GET CONFUSED ABOUT RETURN VALUES AND JUST

PRINTING SOMETHING TO THE SCREEN!

 Remember – if the block fits, use it

 A call to a function with a return value might be used…

 …clipped to a "set" variable block – the variable will be set to whatever

the function returns

 …clipped to a "display" block – whatever the function returns will be

printed

 …in fact, it could be used anywhere – the surrounding block will treat

it like whatever value the function returns!

