

 The browser queries a DNS server to find the IP address of

the destination web server

 The browser connects to the destination web server

 The destination web server sends back (among other things)

HTML describing the structure and content of the page

HTML

 HTML describes the structure and content of a web page

 HTML is static – it never changes

 If you reload a page a million times, you'll see the same page a

million times

 However, the modern web doesn't (often) work like that

 Consider if you wanted a page to simulate the throw of a

dice

 Say you had six images of a dice, and you wanted to show a

random different one each time the page loaded

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

</body>

</html>

 No matter how many times you request the page, the server
would always send back the same HTML, i.e.

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

</body>

</html>

 So every time you requested the page, you'd get the dice
face image for 1

 But what about if the server could send back (slightly)
different HTML markup each time?

 Server side scripting allows us to
write programs that run on the web
server – this is called server side

 There are many different server side scripting languages and
platforms

 PHP

 Perl

 Java

 Regardless of language, the principle is the same

 A program runs on the web server

 The program generates an HTML page

 The HTML that the program generates can be different each time

 The HTML that the program generates can vary, depending on (for
example)

 user input

 external data sources (e.g. databases, web services)

 The server sends back the generated HTML to the browser

 ASP.NET

 Python

 Ruby

 Let's pretend that we could write some Banana code that would

run on a web server

 Our hypothetical code is going to generate the HTML to produce

a random dice throw:

set dicenum = random(5) +1

display "<html>"

display "<head>"

display "<title>Dice page!</title>"

display "</head>"

display "<body>"

display "<p>You have thrown a</p>"

display ""

display "</body>"

display "</html>"

Note sneaky new Banana

command, random – this

gives a random number

between zero and the

number specified

between the brackets

set dicenum = random(5) +1

display "<html>"

display "<head>"

display "<title>Dice page!</title>"

display "</head>"

display "<body>"

display "<p>You have thrown a</p>"

display ""

display "</body>"

display "</html>"

 Now, think about what would happen if

 This code ran on our server whenever a web browser requested a particular URL

 Instead of the output appearing in the NoobLab console window, it was sent back
to the browser

 What would the user viewing the browser page see? What would their
experience be?

 What would happen when they visited the page a second, third, fourth time?

request

request

Hmm… this one isn't just an

unchanging page… I need to

think about this one.

So, think of a number

between one and six...

response

OK… so I've got my random

number. I'm going to send

back a load of HTML which

will also include this random

number

response

I just received a page of

HTML. I have no idea how

the server came up with it. I

just need to display it in a

form that the human can

understand.

 In our example, most of the HTML we send back from the
server is unchanging – only one character changes

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

</body>

</html>

 It's a bit of a drag having to have repeated display
instructions with string constants, isn't it?

 Wouldn't it be easier if we could just have a mixture of
static HTML and then just bring in Banana code at the point
where we needed the bits that change?

 What about if we could do this?

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<bananaCode>

set diceNum = random(5)+1

display ""

</bananaCode>

</body>

</html>

 What about if we could do this?

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<bananaCode>

set diceNum = random(5)+1

display ""

</bananaCode>

</body>

</html>

• Anything not within the
<bananaCode> tags just goes to the

sever as static HTML

• Anything within the <bananaCode>

tags gets run as code

• Any display commands get inserted

into the HTML at the point in which

they occur

• So, the author of the page can just

create standard HTML for the majority

of it

• Only the bits that need to be dynamic –

i.e. that change – need to have actual

code

 The line of code
display "<img src='http://paulneve.com/dice" + dicenum +

".png'/>"

is still a bit convoluted

 What about if we could do this?
<bananaCode>

set diceNum = random(5)+1

</bananaCode>

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<img src='http://paulneve.com/dice<bananaVar>dicenum</bananaVar>.png'/>

</body>

</html>

 The line of code
display "<img src='http://paulneve.com/dice" + dicenum +

".png'/>"

is still a bit convoluted

 What about if we could do this?
<bananaCode>

set dicenum = random(5)+1

</bananaCode>

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<img src='http://paulneve.com/dice <bananaVar>dicenum</bananaVar>

.png'/>

</body>

</html>

Do our server-side "thinking"

as the first thing, up front

Use another server-side tag to specify

that we just want to insert the value of

a Banana variable into the HTML here

 The bad news is that Banana is NOT a server-side language

or platform for the web – you can't write your web apps in

Banana

 (yet! Maybe next year!)

 The good news is that PHP (and many of the real platforms

and/or languages) works in precisely this way

 PHP stands for PHP: Hypertext Processor

 (yes, this is a recursive acronym!)

 PHP is by far the most popular web application platform

currently in use

 It is used by big names such as Facebook, Wikipedia and

Twitter to name a few

 PHP is popular because novices can quickly learn it and use

it to create dynamic web sites and applications…

 …but PHP is also criticised because this ease of use often

leads to sites with really ugly (and often buggy code)

<?php

echo '<h1>Hello world</h1>';

?>

<?php

echo '<h1>Hello world</h1>';

?>

The text <?php means that

everything that follows is

interpreted at the server side

as PHP code.

The text ?> means that the

PHP code ends at this point

Note: Think of these as being PHP's

equivalent to our fictional
<bananaCode> and </bananaCode>

start and end tags…

<?php

echo '<h1>Hello world</h1>';

?>

Anything between <?php and

?> is interpreted and run by

the server as PHP code

Only the output from running

this code gets sent to the

browser (or client). The

browser has no sight of any of

this code – it just sees the

HTML that results from the

server running the code.

 One problem: our previous example would result in invalid HTML
being sent to the browser, so actually we should have done
something more like this

<html>

<head>

<title>PHP Hello World</title>

</head>

<body>

<?php

echo "<h1>Hello world</h1>";

?>

</body>

</html>

 One problem: our previous example would result in invalid HTML
being sent to the browser, so actually we should have done
something more like this

<html>

<head>

<title>PHP Hello World</title>

</head>

<body>

<?php

echo "<h1>Hello world</h1>";

?>

</body>

</html>

As with our fictional

Banana example earlier

on, PHP is "slotted" into

any HTML code at the

point that it occurs. So

the result of running this

echo statement will be

placed into the HTML

between the body start

and end tags.

 PHP is (mostly) a C-like language

 Each individual statement in PHP ends with a semi-colon

 Think of the semi-colon as being like a full stop in English

 Just as is the case with all programming languages, think of the

text-based code as still being block based

 Blocks start with a curly bracket { and end with the corresponding

curly bracket }

 Variables are a bit weird in PHP – they must start with a dollar sign

 After the dollar sign common variable name rules apply, including

 Names cannot start with a number (although you can have a number in the

variable name after the first letter)

 Names cannot contain spaces or punctuation apart from the underscore

character _

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<?php

$dicenum = rand(1,6);

echo '';

?>

</body>

</html>

<html>

<head>

<title>Dice throw</title>

</head>

<body>

<p>You have thrown a</p>

<?php

$dicenum = rand(1,6);

echo '';

?>

</body>

</html>

Remember: Only the code within the PHP start and

end markers gets run by the server as PHP code.

The rest gets passed along to the browser as is.

<bananaCode>

set diceNum = random(5)+1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6);

echo '';

?>

<bananaCode>

set diceNum = random(5)+1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6);

echo '';

?>

When assigning a value to variables in PHP, you

don't need a command like set. Just put a dollar,

followed by the variable name and then a single

equals.

<bananaCode>

set diceNum = random(5) +1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6) ;

echo '';

?>

PHP's random number command, rand, is a bit

nicer than the one we have in Banana. You specify

the minimum and maximum value (so no messing

around with +1)

<bananaCode>

set diceNum = random(5) +1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6);

echo '';

?>

The display command in Banana maps directly

on to the echo command in PHP.

<bananaCode>

set diceNum = random(5) +1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6);

echo '‘ ;

?>

In both PHP and in HTML itself, you can use single quotes ‘ and double

quotes “ interchangeably. This simplifies things when you need to send some

HTML from your server side process that includes quotes.

In the Banana example, we have to encase our string literal in double

quotes. Thus the HTML quote inside the quotes uses single quotes. In the

PHP example, we encase our string literal in single quotes, meaning the

HTML inside can use double quote.

<bananaCode>

set diceNum = random(5) +1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6);

echo '' ;

?>

In both examples, we build a URL by concatenating strings with the value
of our dicenum variable. Our target is a URL that looks like the following

http://paulneve.com/diceX.png

where the red X is the value of our dicenum variable.

Note that in PHP (irritatingly) the operator for concatenation (i.e. joining

strings together) is the full stop . and not the plus + sign!

<bananaCode>

set diceNum = random(5) +1

display ""

</bananaCode>

<?php

$dicenum = rand(1,6) ;

echo '' ;

?>

Don’t forget, in PHP (and in all C-like languages each

statement MUST end with a semi-colon – just like a

full stop in English.

 Do make a point of observing and making a note of the

random number function

 You will be using it a LOT in this week's exercises

$dicenum = rand (1 , 6);

Give me a

random

number…

…between this

number and

this number…

…and put

it into this

variable

1.

2.

3.

4.

1. 2. 3. 4.

47%

2%

9%

43%

<html>

…head element goes here…

<body>

<h1>Hello

<?php

echo 'There';

?></h1>

</body>

</html>

Hello There

Hello

There

Hello

There

Hello There

1

2

3

4

<html>

…head element goes here…

<body>

<h1>Hello

<?php

echo 'There';

?></h1>

</body>

</html>

Hello There

<html>

…head element goes here…

<body>

<h1>Hello

There</h1>

</body>

</html>

 Let’s assume that in both cases, age was a variable that

contained a number:
Banana

if age < 16

display "Person is a child"

elseif age >= 16 and age <= 18

display "Between 16 and 18"

else

display "Person is an old fart"

endif

PHP

if ($age < 16)

{

echo "Person is a child";

}

else if ($age >= 16 && $age <= 18)

{

echo "Between 16 and 18";

}

else

{

echo "Person is an old fart"

}

Blocks

 In PHP (and in all C-like languages), code blocks are

indicated by curly brackets:

if ($age < 16)

{

echo "Person is a child";

}

if age < 16

display "Person is a child"

endif

In this PHP IF statement,

the curly brackets show

the start and end of the

encasing IF block.

The opening curly

bracket shows where the

inside of the IF starts.

The closing curly bracket

is equivalent to the

ENDIF in Banana.

 Let’s assume that in both cases, age was a variable that

contained a number:
Banana

if age < 16

display "Person is a child"

elseif age >= 16 and age <= 18

display "Between 16 and 18"

else

display "Person is an old fart"

endif

PHP

if ($age < 16)

{

echo "Person is a child";

}

else if ($age >= 16 && $age <= 18)

{

echo "Between 16 and 18";

}

else

{

echo "Person is an old fart"

}

Conditions in PHP must be enclosed in brackets. Also note that you cannot
use the simple English version of and – you must use the symbol based

logical operators e.g. && for and, || for or.

 Let’s assume that in both cases, age was a variable that

contained a number:
Banana

if age < 16

display "Person is a child"

elseif age >= 16 and age <= 18

display "Between 16 and 18"

else

display "Person is an old fart"

endif

PHP

if ($age < 16)

{

echo "Person is a child";

}

else if ($age >= 16 && $age <= 18)

{

echo "Between 16 and 18";

}

else

{

echo "Person is an old fart"

}

PHP can use either elseif or else if, i.e. two words

separated by a space. Get in the habit of using the latter. It will

stand you in good stead in other C-like languages which do not
allow elseif with no space.

 Let’s assume that in both cases, age was a variable that

contained a number:
Banana

if age < 16

display "Person is a child"

elseif age >= 16 and age <= 18

display "Between 16 and 18"

else

display "Person is an old fart"

endif

PHP

if ($age < 16)

{

echo "Person is a child";

}

else if ($age >= 16 && $age <= 18)

{

echo "Between 16 and 18";

}

else

{

echo "Person is an old fart"

}

Note how the curly brackets wrap each block of code that belongs

with each if/else condition. You must always have a matching

closing bracket for each opening bracket!

 The semi-colon in C-like languages indicates the end of a

statement

 So what would be wrong with this picture?

if ($age < 16);

{

echo "Person is a child";

}

 The semi-colon in C-like languages indicates the end of a

statement

 So what would be wrong with this picture?

if ($age < 16);

{

echo "Person is a child";

} In this case, the if statement ends here – at the end of the

code block!

If you put a semi-colon at the end of the if line itself, you

are essentially saying "if the condition is true do what's

between the condition and the end of the statement" – i.e.

nothing!

Operator Meaning Example

> greater than if ($number > 40)

< less than if ($height < 1.5)

== equals if ($counter == 0)

!= not equals if ($records != 1)

>= greater than or equal to if ($students >= 10)

<= less than or equal to if ($result <= -5)

 Relational operators result in a boolean value

 A boolean value has two possible states – TRUE or FALSE

 If a variable value contains 7

$value < 5 false

$value > 5 true

$value == 5 false

$value != 5 true

$value == 7 true

46

 An expression involving relational operators
will result in a single value, just as with
mathematical operators

 The single value that results from an expression
with relational operators can only be TRUE or
FALSE – i.e. a boolean

 So our IF statements, grammatically speaking,
expect something that will end up as a single
boolean value

47

48

if (an expression that results in true or false)

{

…do something

}

$value = 7;

if ($value + 5)

{

$value = 0;

}

$value = 7;

if ($value == 7)

{

$value = 0;

}

$value = 7;

if ($value > 5)

{

$value = 0;

}

$value = 7;

if ($value + 5 == 13)

{

$value = 0;

}

Operator Name Description

|| OR If ANY of the conditions are true, this

operator will return TRUE. If ALL of the

conditions are false, it will return

FALSE

&& AND If ALL of the conditions are true, this

operator will return TRUE. If ANY of

the conditions are false, it will return

FALSE.

! NOT Reverses a condition – so if the original

condition was true, this will return

FALSE. If the original condition was

false, this will return TRUE

49

1. Apricot

2. Banana

3. Orange

4. Apple

5. ApricotBanana

6. BananaOrange

7. OrangeApple

8. BananaApple

9. ApricotApple

10. ApricotBanana

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

7%

37%

2%

4%

0%

2%

15%

13%

11%

9%

$woot = 17;

if ($woot > 21 && $woot < 30)

{

echo "Apricot";

}

if ($woot == 17)

{

echo "Banana";

}

if ($woot < 12)

{

echo "Orange";

}

else

{

echo "Apple";

}

$woot = 17;

if ($woot > 21 && $woot < 30)

{

echo "Apricot";

}

if ($woot == 17)

{

echo "Banana";

}

if ($woot < 12)

{

echo "Orange";

}

else

{

echo "Apple";

}

 Just because an IF
statement comes straight
after another IF statement,
doesn't mean they are
related

 Each IF statement is
evaluated in isolation and
independently of others –
even if they come after
each other

 The only exception is when
you use ELSE (or ELSE IF) –
in which case, if one of the
conditions is true, the other
conditions are not
evaluated

for ($count = 0 ; $count < 5 ; $count++)

{

echo "PHP is awesome";

}

Declares and initialises the

counter variable – in this case,

the counter variable is called

count and it starts at zero.

Specifies the condition under which

the loop continues to repeat – in this

case it keeps going while it’s less

than 5… i.e. it does it UNTIL it gets to

4…

53

for ($count = 0 ; $count <= 4 ; $count++)

{

echo "PHP is awesome";

}

equivalent to the Banana code

FOR I = 0 TO 4 STEP 1

DISPLAY "PHP is awesome"

ENDFOR

Declares and initialises the counter variable – in this case, the

counter is i and it starts at zero.

Specifies the condition

under which the loop

continues to repeat – in

this case it keeps going

UNTIL it gets to 5.

What happens to the

counter variable every

time we repeat the loop –

in this case, it is

increased by 1.

54

for ($count = 0 ; $count <= 4 ; $count++)

{

echo "PHP is awesome";

}

equivalent to the Banana code

FOR I = 0 TO 4 STEP 1

DISPLAY "PHP is awesome"

ENDFOR

This is a mathematical

operation – basically, we are
saying "increase count by 1"

We could equally have said
$count = $count + 1

here…

55

for ($count = 10 ; $count > 0 ; $count--)

{

echo "PHP is awesome";

}

equivalent to the Banana code

FOR I = 10 TO 1 STEP -1

DISPLAY "PHP is awesome"

ENDFOR

Declares and initialises the counter variable – in this case, the

counter is i and it starts at ten.

Specifies the condition

under which the loop

continues to repeat – in

this case it keeps going

while it's more than zero

What happens to the

counter variable every

time we repeat the loop –

in this case, it is

decreased by 1.

We could also have used
$count = $count - 1

56

+ add

- Subtract

* multiply

/ divide

% remainder
operands

operator
$counter = 1000;

$number1 = counter + 10;

$number2 = number1 – 500;

$number3 = number2 * 2;

$number4 = number3 / 9;

$number5 = number4 % 5;

expression

assignment
operator

57

$myNumber = 10;

$myNumber = $myNumber + 5;

$myNumber = 10;

$myNumber += 5;

$myNumber = 10;

$myNumber = $myNumber + 1;

$myNumber = 10;

$myNumber++;

 Also for operators other than plus, e.g.
$myNumber = 10;

$myNumber = $myNumber--; // myNumber becomes 9

$myNumber *= 2; // myNumber becomes 18

1. 5678910

2. 1098765

3. 678910

4. 109876

5. 12345678910

6. 10987654321

1. 2. 3. 4. 5. 6.

11%

2% 2%
0%

67%

17%

(rest of HTML document assumed)

<body>

<p>

<?php

for ($count = 10; $count > 5; $count--)

{

echo $count;

}

?>

</p>

</body>

59

$count = 0;

$end = rand(0,10);

while ($count < $end)

{

echo "<p>PHP is repeatedly awesome</p>";

$count++;

}

equivalent to the Banana code

SET count = 0

SET end = random(10)

WHILE count < end

DISPLAY "<p>Banana is repeatedly awesome</p>"

count = count + 1;

ENDWHILE

60

$count = 0

$end = rand(0,10);

do

{

echo "<p>PHP rocks</p>";

$count++;

} while ($count != $end);

equivalent to the pseudocode

SET count = 0

SET end = random(10)

REPEAT

DISPLAY "<p>Banana is repeatedly awesome"

count = count + 1

UNTIL count == end

note the semicolon

$count = 0

$end = rand(0,10);

do

{

echo "<p>PHP rocks</p>";

$count++;

} while ($count != $end) ; <- note the semicolon

equivalent to the pseudocode

SET count = 0

SET end = random(10)

REPEAT

DISPLAY "<p>PHP rocks</p>"

count = count + 1

UNTIL count == 5

The condition specifies the condition under

which the loop continues to repeat – in this

case it keeps going WHILE the variable
count is not equal to the variable end.

While the condition evaluates to true, these

statements while repeatedly run.

IMPORTANT: note the fundamental difference

between the REPEAT/UNTIL construct you saw

in Banana and PHP's DO/WHILE.

• REPEAT/UNTIL repeats until the final

condition is TRUE.

• So when it is true it stops!

• DO/WHILE in PHP repeats while the

condition is true

• So when it is true it repeats!

$count = 0;

$end = rand(0,10);

while ($count < $end)

{

echo "<p>PHP rocks</p>";

$count++;

}

$count = 0

$end = rand(0,10);

do

{

echo "<p>PHP rocks</p>";

$count++;

} while ($count < $end);

 What would happen in both cases if the random number
chosen was 0?

 for loop – when the number of repetitions can be

determined before the loop is entered

 while loop – if the number of repetitions cannot be

determined before the loop is entered

 do-while loop – same as a while loop, but the statements

are executed at least once (same as a repeat/until in

Banana)

63

function diceThrow($sides)

{

$result = rand(1,$sides);

return $result;

}

function diceThrow(sides)

set result = random(sides-1)+1

return result

endfunction

function diceThrow($sides)

{

$result = rand(1,$sides);

return result;

}

function diceThrow(sides)

set result = random(sides-1)+1

return result

endfunction

As with Banana, function parameters go

between brackets. If there's more than

one function separate them with commas.

Function parameters in PHP need to have

dollar signs $ in front of them just like

any other variable.

function greeting()

{

echo "Hello there!"

}

function greeting

display "Hello there!"

endfunction

function greeting ()

{

echo "Hello there!"

}

function greeting

display "Hello there!"

endfunction

UNLIKE Banana, if a function doesn't have any

parameters, you must still include the

brackets after the function name. If there are

no parameters just put nothing between the

brackets.

1. Kevin/Jane/Abdul

2. Kevin/Jane/Clara

3. Jane/Abdul/Kevin

4. Jane/Clara/Kevin

5. Jane/Kevin

6. Something else

1. 2. 3. 4. 5. 6.

51%

4% 4%
2%

0%

38%

function foo()

{

echo "<p>Kevin</p>";

}

function bar()

{

echo "<p>Jane</p>";

}

function whee($stuff)

{

if ($stuff > 10)

{

echo "<p>Abdul</p>";

}

else

{

echo "<p>Clara</p>";

}

}

bar();

whee(12);

foo();

 If your PHP code is short (e.g. you're just injecting a variable
into some HTML) you can put the PHP start and end tag on a
single line around the PHP code itself

 For example, you could do something like this:

<?php $dicenum = rand(1,6); ?>

<html>

<head>

<title>An example</title>

</head>

<body>

<p>The dice rolled is: <?php echo $dicenum ?></p>

</body>

</html>

 If your PHP code is short (e.g. you're just injecting a variable
into some HTML) you can put the PHP start and end tag on a
single line around the PHP code itself

 For example, you could do something like this:

<?php $dicenum = rand(1,6); ?>

<html>

<head>

<title>An example</title>

</head>

<body>

<p>The dice rolled is: <?php echo $dicenum ?> </p>

</body>

</html> Red: PHP start tags

Blue: PHP end tags

Green: PHP code

 You can also do
<?php $dicenum = rand(1,6); ?>

<html>

<head>

<title>An example</title>

</head>

<body>

<p>The dice rolled is: <?= $dicenum ?></p>

</body>

</html>

 Note the <?= start tag rather than <?php

 This is a shorthand for <?php echo

 In a nutshell - it means that whatever value is between the start and
end tags will be directly injected into the HTML output

 WARNING: THIS ONLY WORKS ON NEWER VERSIONS OF PHP, OR ON
OLDER VERSIONS THAT HAVE THE PARAMETER short_open_tag
ENABLED

 translation: if your hosting company uses an old version of PHP, you will need
to bug them to make a parameter change

 Static HTML pages usually have the extension .htm or .html

 PHP pages have (surprisingly) the extension .php

 If you do not have this extension at the end of your

filename, any PHP code in it will not get run by the server

 In NoobLab, the default page is index.html

 Either click on its tab to rename it, or create a new page called

index.php and delete the index.html

 HTML pages are static - they never change even if you reload

them a million times

 Server-side scripting platforms like PHP give us a way to

create dynamic HTML pages that can change each time

 The programmer creates a program that runs on the server

and generates HTML as its output

 The program runs on the server and sends back this output

 The browser (or client) has no idea that the HTML it receives

was generated by a program, or indeed, that it might change

the next time it's accessed - it just receives the HTML from

the server and renders it in a form the user can read

 PHP is (mostly) C-like

 Use curly brackets to denote code blocks (as opposed to END

keywords like ENDIF, ENDFOR as found in Banana)

 PHP variables are prefixed with dollar signs

 The usual programming constructs exist in PHP, e.g. IF, FOR,

WHILE, DO/WHILE and functions

 DO/WHILE is analogous to REPEAT/UNTIL in Banana, but the

condition is reversed

