

 HTML pages describe static web content

 They are stored by and delivered by a web server

 A browser receives these pages from a web server and renders

the HTML markup into something a human being can read

 PHP code allows for dynamic web content

 When a browser requests a page from a server that includes some

PHP, the server runs the PHP code first

 The PHP code will do some processing

 The PHP code will result in some HTML markup

 This can be different each time the page is requested!

 The HTML then gets sent to the browser

 Net result: the end user sees a web page that changes

 HTML forms let us get data from the end user of a web

page/site

 Form fields are encased in an enclosing <form> element

 There are different types of form fields for things like single

lines of free text, larger text areas, pull down lists,

checkboxes and radio buttons

 A form might collect

 Free text information

 e.g. Name, Address, What do you think about the price of fish?

 Selections from a pre-defined set of options

 e.g. Gender

 A positive or negative response to a question

 e.g. Have you ever done any programming before?

 Online forms are no different!

 A variety of form controls exist to allow you to collect

information from the user of a web page

1. A form is presented to the user within their web browser.

2. The user fills in the form fields

3. Most forms will have a "submit" button. Upon clicking this,

the data that has been entered into the form is sent to a

server (often the server which is hosting the web site from

which the form originated, but not always)

4. A server-side process (usually a page in something like PHP,

Perl, Python or similar) will process the data from the form.

It might use other data sources to do so, e.g. databases,

other files on the server hard disk, etc.

5. The server-side process will then generate a new page of

HTML which represents the response to the user - i.e. any

feedback or results to their input

1. A form is presented to the user within their web browser.

2. The user fills in the form fields

3. Most forms will have a "submit" button. Upon clicking this,

the data that has been entered into the form is sent to a

server (often the server which is hosting the web site from

which the form originated, but not always)

4. A server-side process (usually a page in something like PHP,

Perl, Python or similar) will process the data from the form.

It might use other data sources to do so, e.g. databases,

other files on the server hard disk, etc.

5. The server-side process will then generate a new page of

HTML which represents the response to the user - i.e. any

feedback or results to their input

2.5 Client-side Javascript processes the user's form field

inputs and makes changes to the HTML elements of

the current page to provide feedback to the user

 For any form that is going to be processed by a server, a
<form> element must surround all of the form components

 (think blocks within blocks)

 The <form> element will have (at least) an action

attribute:

<form action="register.php">

…individual form components would go here…

</form>

 The action attribute gives the URL for a page that will

process the data that comes from the form

 Usually, this will be something written in PHP, Python, Java, Perl

or some other web programming platform…

 The <input> element creates a variety of different form

components

 At its simplest, it will display a simple text field:

Last name:

<input type="text" name="username"/>

 This would display a simple, plain text field into which the

user could type text:

 (Q: Why does the input field appear next to the text?)

 <input> elements should contain (at least) a type attribute

and a name attribute

<input type="text" name="username" />

 If the type is not given, then it assumes that the type

should be text (i.e. a simple single line text field)

 The name uniquely identifies the field

 When the form is sent to a server for processing, the code

that runs server-side knows which field is which based on
the value of the name attributes

 There are a number of other attributes you can use on an input
element

 size specifies how wide (in characters) the input element should be

 If this is not given, 20 is usually assumed

 You can also style and size your input elements with CSS

 maxlength specifies the maximum number of characters that can be
physically typed into the input element

<input name="username" maxlength="6" size="4"/>

 Note that the size and maxlength can be different:

 The user can happily type in more characters than the size (the text inside
the input box will scroll)

 However, if the user tries to type in more characters than the maxlength,
the additional characters will be ignored

 If the size is more than the maxlength, then there will be empty space at
the right hand side of the text box

 You can also specify a default text value using the value

attribute

<input name="username" value="Paul"/>

 If this is given, then when the form loads the text box will

already be filled in with this value…

 …although if the user chooses they can delete the value and

replace it with one of their own…

 Passwords are one of the few controls that don't have an
equivalent on a paper-based form

 They are pretty simple though:

Password:

<input type="password" name="pwd"/>

 You give a type of password

 The only difference between password fields and standard
text fields is that anything the user types in is not visible on
the screen

 To create a multiple line text box, you
need to use the <textarea> element

<textarea cols="30" rows="10" name="story">

The cat was playing in the garden.

</textarea>

 To create a multiple line text box, you
need to use the <textarea> element

<textarea cols="30" rows="10" name="story">

The cat was playing in the garden.

</textarea>

 The rows and cols attributes

specify the height (rows) and

width (cols) of the textarea

respectively. These are specified

in characters (so this example is

30x10)

 To create a multiple line text box, you
need to use the <textarea> element

<textarea cols="30" rows="10" name="story" >

The cat was playing in the garden.

</textarea>

 As usual, the name attribute

specifies the unique name of

this text area and distinguishes

it from other form components

 To create a multiple line text box, you
need to use the <textarea> element

<textarea cols="30" rows="10" name="story">

The cat was playing in the garden.

</textarea>

 The text between the start and

the end tags will be the default

text in the text area when the

form loads

 As with the value attribute on the input element, the user

can delete this default text and type their own if they

choose

 Radio buttons allow the user to choose one options from a

range of pre-defined responses:

<p>What is your favourite type of music?</p>

<input type="radio" name="genre" value="rock"/>Rock

<input type="radio" name="genre" value="pop"/>Pop

<input type="radio" name="genre" value="jazz"/>Jazz

 Radio buttons allow the user to choose one options from a

range of pre-defined responses:

<p>What is your favourite type of music?</p>

<input type="radio" name="genre" value="rock"/>Rock

<input type="radio" name="genre" value="pop"/>Pop

<input type="radio" name="genre" value="jazz"/>Jazz

 Only one of the radio buttons can be selected at a time. If
the user selects a new option, the previous one turns off.

 Radio buttons allow the user to choose one options from a

range of pre-defined responses:

<p>What is your favourite type of music?</p>

<input type="radio" name="genre" value="rock"/>Rock

<input type="radio" name="genre" value="pop"/>Pop

<input type="radio" name="genre" value="jazz"/>Jazz

 All of the <input> elements that make up the group of

radio buttons should have the same name. This is how the

browser knows that the radio buttons go together as a group

 …usually the radio buttons in a group will be in close proximity to

each other on the page, although nothing say this has to be the

case!

 Radio buttons allow the user to choose one options from a

range of pre-defined responses:

<p>What is your favourite type of music?</p>

<input type="radio" name="genre" value="rock"/>Rock

<input type="radio" name="genre" value="pop"/>Pop

<input type="radio" name="genre" value="jazz"/>Jazz

 The value of each radio button is what gets sent to the

server if that particular option is selected when the form is

submitted

 …this often closely matches the text (or "label") that

accompanies the radio button, but doesn't have to

 Radio buttons allow the user to choose one options from a

range of pre-defined responses:

<p>What is your favourite type of music?</p>

<input type="radio" name="genre" value="rock"/>Rock

<input type="radio" name="genre" value="pop"

checked="checked"/>Pop

<input type="radio" name="genre" value="jazz"/>Jazz

 You can also use the checked attribute to specify which

radio button should be the default

 …if you leave this off, it is possible for your user to leave none of

the options selected (although in some cases you might want

this)

 Check boxes let the use give a positive or negative (yes or

no) response to a single item

 There are two scenarios in which you might use checkboxes:

1. If you want to have a one shot yes or no item:

2. If you want to have a list of items from which the user can

select one or more options

 If you want to have a one shot yes or no item:

<input type="checkbox" name="spam"

value="true"/> Yes! Please send me lots of spam

email!

 Use an input element of with a type of checkbox

 The server gets sent a field called whatever the name

attribute is

 The value of this field will be whatever is in the value

attribute

 As with radio buttons, you can use the checked attribute to

make the box default to selected (i.e. ticked)

 If you want to have a list of options which can have multiple
things selected:

<p>What hobbies do you enjoy?</p>

<input type="checkbox" name="hobbies[]" value="stamps"/>

Stamp collecting

<input type="checkbox" name="hobbies[]" value="trains"/>

Train spotting

<input type="checkbox" name="hobbies[]" value="rimmerism"/>

Hammond organ music

<input type="checkbox" name="hobbies[]" value="paintdry"/>

Watching paint dry

 Note the name attributes!

 If you want the different options to go to the server within the
same field, you must use the same name for all of them

 If you use the same name on checkboxes and you expect to be
able to read them server-side in PHP, you must append [] to the
name

 A drop down list lets the user select one

of a set of pre-defined options

 It does not use the input element – instead, a surrounding

select element contains a number of option elements:

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web">

<option value="tim">Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff">Geoff Hurst in the 1966

World Cup</option>

</select>

 A drop down list lets the user select one

of a set of pre-defined options

 It does not use the input element – instead, a surrounding

select element contains a number of option elements:

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web">

<option value="tim">Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff">Geoff Hurst in the 1966

World Cup</option>

</select>

The surrounding select element indicates that

there is a drop down list

 A drop down list lets the user select one

of a set of pre-defined options

 It does not use the input element – instead, a surrounding

select element contains a number of option elements:

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web">

<option value="tim">Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff">Geoff Hurst in the 1966

World Cup</option>

</select>
Each option element represents a different

option that the user can select

 A drop down list lets the user select one

of a set of pre-defined options

 It does not use the input element – instead, a surrounding

select element contains a number of option elements:

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web">

<option value="tim" >Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff">Geoff Hurst in the 1966

World Cup</option>

</select>
The value of an option is the text that will be

sent to the server if the user chooses that

option within their browser

 A drop down list lets the user select one

of a set of pre-defined options

 It does not use the input element – instead, a surrounding

select element contains a number of option elements:

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web" >

<option value="tim">Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff">Geoff Hurst in the 1966

World Cup</option>

</select>
The name of the select element contains the

field name under which the results will be sent

to the server.

<p>Who is usually credited with the invention

of the World Wide Web?</p>

<select name="web">

<option value="tim">Tim Berners-Lee</option>

<option value="bill">Bill Gates</option>

<option value="geoff" selected="selected">

Geoff Hurst in the 1966 World Cup

</option>

</select>

 A submit button allows the user to send the form to the
server

 All the fields will be sent to the server, along with their
values

 Any server-side process will be then able to read these
field/value pairs

 The submit button is easy – a very basic input element
with a type of submit

<input type="submit"/>

 You don't need to have a value or a name

 If you don't have a value, then the browser will fill in
something like "Submit Query" as the text on the butto

 ..so if you want the button to say something sensible, put it in
your value

 The surrounding form element

is an example of a block element

 This means that any surrounding content will always be

separated from the form itself

The quick brown fox jumped

<form action="submit.php">

<input type="text" name="username"/>

</form>

over the lazy dog's tail

 All of the elements within forms

(e.g. input, select) are inline

elements

 This means that any surrounding content will flow around

the element unless you use paragraphs, line breaks etc:

<form action="submit.php">

The quick brown fox jumped

<input type="text" name="username"/>

over the lazy dog's tail

</form>

 Consider the following form:

<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

 Stage 1

 The end user

navigates their

browser to a page

with a form on it

 The browser

requests the page

from the server

 The server sends

back a page of

HTML (including the

form markup)

 The browser

renders the page

(including the form)

HTML

Duckett

 Stage 2

 The end user fills in the form
within their browser page

 The user clicks on the submit
button on the form

 The browser sends a request
to the server for the URL
that was in the action
attribute of the form
element

 As part of the request, the
browser also sends the form
data

 On the server, a server side
process will examine the
form data and generate a
response in HTML

 This HTML is sent back to the
browser and then rendered
like any other page

HTML

Duckett

Form

data

processdetails.php

<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

 PHP has a special variable called $_REQUEST which is used

for handling form input

 You can use this variable to read a specific form field thus:

$surname = $_REQUEST["surname"] ;

get whatever the user typed

into the surname field

 PHP has a special variable called $_REQUEST which is used

for handling form input

 You can use this variable to read a specific form field thus:

$surname = $_REQUEST["surname"];

put it into the new variable

called surname

 PHP has a special variable called $_REQUEST which is used

for handling form input

 You can use this variable to read a specific form field thus:

$banana = $_REQUEST["surname"];

put it into the new variable

called banana

(you don't have to match

any variable names in your

PHP with your form field

names – although often it

makes good sense to do

so!)

 A practical example:

index.html
<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

NB: We are not showing

complete pages here! We

assume the usual structural

requirements of an HTML

page are present!

 A practical example:

index.html
<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

The user starts by navigating

the browser to this page.

 A practical example:

index.html
<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

In their browser window, they

fill in the form fields

represented by these two

elements.

 A practical example:

index.html
<form action="processdetails.php">

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

When they have completed

the form, they click this

button.

 A practical example:

index.html
<form action="processdetails.php" >

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

The act of clicking

the button makes

the browser send a

request to the

server for the

processdetails.php

page. As part of

the request all the

values of the form

fields are included.

firstname = Paul

surname = Neve

 A practical example:

index.html
<form action="processdetails.php" >

First name: <input name="firstname"/>

Surname: <input name="surname"/>

<input type="submit" value="Send Details"/>

</form>

processdetails.php
<?php

$surname = $_REQUEST["surname"];

if ($surname == "Neve")

{

echo "<p>Welcome, oh mighty one!</p>";

}

else

{

echo "<p>Please leave, oh lowly one!</p>";

}

?>

processdetails.php

contains PHP code which

is run server side. Within

the code is a reference to
the special $_REQUEST

variable. Otherwise, it's

just PHP code using the

standard constructs

you've all seen before…

 Unlike programs you've written

previously in languages like

Banana, where you could mix

input and processing, PHP has

to handle user input in a batch

Banana

display "What is your name?"

get name

display "Hello, "+name

display "What is your age?"

get age

if (age >= 18)

display "Go and have a beer!"

else

display "Go and have a coke!"

endif

HTML and PHP

<form action="beercheck.php">

<p>What is your name?</p>

<input name="name"/>

<p>What is your age?</p>

<input name="age"/>

<input type="submit"/>

</form>

<?php

$name = $_REQUEST["name"];

$age = $_REQUEST["age"];

echo "<p>Hello, ".$name." </p>";

if ($age >= 18)

{

echo "<p>Go and have a beer!</p>";

}

else

{

echo "<p>Go and have a coke!</p>";

}

?>

 Unlike programs you've written

previously in languages like

Banana, where you could mix

input and processing, PHP has

to handle user input in a batch

Banana

display "What is your name?"

get name

display "Hello, "+name

display "What is your age?"

get age

if (age >= 18)

display "Go and have a beer!"

else

display "Go and have a coke!"

endif

HTML and PHP

<form action="beercheck.php">

<p>What is your name?</p>

<input name="name"/>

<p>What is your age?</p>

<input name="age"/>

<input type="submit"/>

</form>

<?php

$name = $_REQUEST["name"];

$age = $_REQUEST["age"];

echo "<p>Hello, ".$name." </p>";

if ($age >= 18)

{

echo "<p>Go and have a beer!</p>";

}

else

{

echo "<p>Go and have a coke!</p>";

}

?>

 Often, your "program" will

be split across two files –

one which is responsible for

prompting your user for

input, and the other which

is responsible for processing

the input and providing a

result:

index.html

<form action="beercheck.php">

<p>What is your name?</p>

<input name="name"/>

<p>What is your age?</p>

<input name="age"/>

<input type="submit"/>

</form>

beercheck.php

<?php

$name = $_REQUEST["name"];

$age = $_REQUEST["age"];

echo "<p>Hello, ".$name." </p>";

if ($age >= 18)

{

echo "<p>Have a beer!</p>";

}

else

{

echo "<p>Have a coke!</p>";

}

?>

 Counting application

(again, these are excerpts from

structurally complete files)

index.html

<form action="count.php">

<p>Please type a number to

count to:</p>

<input name="number"/>

<input type="submit"/>

</form>

count.php

<?php

$max = $_REQUEST["number"];

for ($count = 0; $count < $max; $count++)

{

echo "".$count."";

}

?>

 Counting application

(again, these are excerpts from

structurally complete files)

index.html

<form action="count.php">

<p>Please type a number to

count to:</p>

<input name="number"/>

<input type="submit"/>

</form>

count.php

<?php

$max = $_REQUEST["number"];

for ($count = 0; $count < max; $count++)

{

echo "".$count."";

}

?>

The user clicks this…

 Counting application

(again, these are excerpts from

structurally complete files)

index.html

<form action="count.php">

<p>Please type a number to

count to:</p>

<input name="number"/>

<input type="submit"/>

</form>

count.php

<?php

$max = $_REQUEST["number"];

for ($count = 0; $count < max; $count++)

{

echo "".$count."";

}

?>

To

send

this..

…to this.

 Your PHP code can output any HTML you like…

 …so nothing stops you writing PHP that builds a form and the

field elements within that form

 Consider this specification:

 A web application is needed that will generate three random

numbers between 1 and 10. It will then ask the user to choose

which number is their favourite. It should then display if their

chosen number is more than five, equal to five or less than five.

 Consider this specification:

 A web application is needed that will generate three random

numbers between 1 and 10. It will then ask the user to choose

which number is their favourite. It should then display if their

chosen number is more than five, equal to five or less than five.

 How many individual HTML/PHP pages will there be? Which

will be static (pure HTML) and which will be dynamic

(includes PHP)?

 Consider this specification:

 A web application is needed that will generate three random

numbers between 1 and 10. It will then ask the user to choose

which number is their favourite. It should then display if their

chosen number is more than five, equal to five or less than five.

 How many individual HTML/PHP pages will there be? Which

will be static (pure HTML) and which will be dynamic

(includes PHP)?

 Break things down into processing and input

 Whenever there is input, you can consider this the "end of a

page"

 Consider this specification:

 A web application is needed that will generate three random

numbers between 1 and 10. It will then ask the user to choose

which number is their favourite. It should then display if their

chosen number is more than five, equal to five or less than five.

 Our first page will be the part of the specification in green

 Our second page will be the part in blue

 What kind of pages will they be? Static HTML only, or will

they need PHP code?

 Page 1

 A web application is needed that will generate three random

numbers between 1 and 10. It will then ask the user to choose

which number is their favourite.

 Page 2

 It should then display if their chosen number is more than five,

equal to five or less than five.

 Both pages have dynamic elements (highlighed in orange)

 So both pages will need to include PHP code

 Page 1

1. Generate our random numbers

 PHP code:

$num1 = rand(1,10);

$num2 = rand(1,10);

$num3 = rand(1,10);

2. Present the numbers in a form that allows the user to choose

one of them

 The way in which a user of a web app supplies input to the app is

through a form

 So, we will need to generate a form that includes the numbers and

lets the user select one

 Page 1

2. (continued) Present the numbers in a form that allows the user

to choose one of them

 …we will need to generate a form that includes the numbers and lets

the user select one

 We could use radio buttons OR a select box

 We need to write PHP echo statements that will generate

HTML to create radio buttons

 For each radio button, we will need HTML like

<input type="radio" name="favenum" value="1">

Number 1

 If we were echo'ing this HTML, we might

do something like

echo '<input type="radio" name="favenum" value="1">';

echo 'Number 1
';

 We need to write PHP echo statements that will generate HTML

to create radio buttons

 For each radio button, we will need HTML like

<input type="radio" name="favenum" value="1">

Number 1

 If we were echo'ing this HTML, we might

do something like

echo ' <input type="radio" name="favenum" value="1"> ';

echo 'Number 1
';

why the single quotes rather than double quotes?

 We need to write PHP echo statements that will generate

HTML to create radio buttons

 For each radio button, we will need HTML like

<input type="radio" name="favenum" value="1">

Number 1

 The grey text stays the same each time – only the numbers need to

change

 Our PHP will need to use string constants and concatenate our

random number variables onto the text that stays the same

 We need to write PHP echo statements that will generate

HTML to create radio buttons

 For each radio button, we will need HTML like

<input type="radio" name="favenum" value="1">

Number 1

 The grey text stays the same each time – only the numbers need to

change

 Our PHP will need to use string constants and concatenate our

random number variables onto the text that stays the same

echo '<input type="radio" name="favenum" value="'.$num1.'"/>';

echo 'Number '.$num1."
";

 We need to write PHP echo statements that will generate

HTML to create radio buttons

 For each radio button, we will need HTML like

<input type="radio" name="favenum" value="1">

Number 1

 The grey text stays the same each time – only the numbers need to

change

 Our PHP will need to use string constants and concatenate our

random number variables onto the text that stays the same

echo ' <input type="radio" name="favenum" value=" '. $num1 .' "/> ';

echo ' Number '. $num1 ."
 ";

 Parts highlighed with blue are constants

 Those in red are variables

 Note the use of the full stop symbol . for concatenation!

 Page 1

2. (continued) Present the numbers in a form that allows the user

to choose one of them

 …we will need to generate a form that includes the numbers and lets

the user select one

 We could use radio buttons OR a select box

<form action="choose.php">

<?php

echo '<input type="radio" name="favenum" value="'.$num1.'"/>';

echo 'Number '.$num1."
";

echo '<input type="radio" name="favenum" value="'.$num2.'"/>';

echo 'Number '.$num2."
";

echo '<input type="radio" name="favenum" value="'.$num3.'"/>';

echo 'Number '.$num3."
";

?>

<input type="submit"/>

</form>

 Page 1

2. (continued) Present the numbers in a form that allows the user

to choose one of them

 …we will need to generate a form that includes the numbers and lets

the user select one

 We could use radio buttons OR a select box

<form action="choose.php">

<select name="favenum">

<?php

echo '<option value="'.$num1.'">Number '.$num1.'</option>';

echo '<option value="'.$num2.'">Number '.$num2.'</option>';

echo '<option value="'.$num3.'">Number '.$num3.'</option>';

?>

</select>

<input type="submit"/>

</form>

 Complete page (index.php)
<?php

$num1 = rand(1,10); $num2 = rand(1,10); $num3 = rand(1,10);

?>

<html>

<head>

<title>Random number app</title>

</head>

<body>

<p>Choose your favourite random number:</p>

<form action="choose.php">

<?php

echo '<input type="radio" name="favenum" value="'.$num1.'"/>';

echo 'Number '.$num1."
";

echo '<input type="radio" name="favenum" value="'.$num2.'"/>';

echo 'Number '.$num2."
";

echo '<input type="radio" name="favenum" value="'.$num3.'"/>';

echo 'Number '.$num3."
";

?>

<input type="submit"/>

</form>

</body>

</html>

 What the server might send to the browser, and what
the browser would "see":

<html>

<head>

<title>Random number app</title>

</head>

<body>

<p>Choose your favourite random number:</p>

<form action="choose.php">

<input type="radio" name="favenum" value="1">

Number 1

<input type="radio" name="favenum" value="7">

Number 7

<input type="radio" name="favenum" value="4">

Number 4

<input type="submit"/>

</form>

</body>

</html>

 This is now just an HTML form like any other

 The browser doesn't care that the form fields were built

dynamically in PHP – in fact it doesn't even know

 The user can then interact with the form, supply data, make

choices, in the normal way

 When they click the submit button, the form data gets sent
to the URL in the action attribute of the form element just

as normal:

<form action="choose.php">

 Consider this specification (reminder)

 A web application is needed that will generate three random numbers
between 1 and 10. It will then ask the user to choose which number is their
favourite. It should then display if their chosen number is more than five,
equal to five or less than five.

 The second highlighted part is now what we need to handle in
choice.php

1. Get the data that was submitted in the previous form in the input element
named favenum

 e.g. $num = $_REQUEST["favenum"];

2. Process the number and display the result

 if ($num < 5)
{

echo "<p>Less than 5</p>";
}
else if ($num == 5)
{

echo "<p>Equal to 5</p>";
}
else
{
echo "<p>More than 5</p>";

}

 Complete page (choose.php)
<html>

<head>

<title>Random number checker</title>

</head>

<body>

<p>Your random number is

<?php

$num = $_REQUEST["favenum"];

if ($num < 5)
{
echo "Less than 5";

}
else if ($num == 5)
{
echo "Equal to 5";

}
else
{

echo "More than 5";
}

?>

</p>

</body>

</html>

 This was a clunky line of code, wasn't it…?

echo '<input type="radio" name="favenum" value="'.$num1.'"/>';

 We used single quotes around the string literals in our echo

statement so we could have double quotes within the string

we were building

 We could have flipped things round and had single quotes in

our HTML, and used double quotes to delimit the string

literals, i.e.

echo "<input type='radio' name='favenum' value='".$num1."'/>";

 Alternatively, we could have escaped our quotes

 Certain symbols are called escape characters

 These symbols are those that are not easily represented within

the rules that govern strings in a given programming language

 Maybe they break delimiting rules – e.g. quotes

 Maybe they are non-printable symbols which have other meaning in

a given language – e.g. a carriage return

 Escape characters are represented by an escape sequence

when they need to appear in a string literal

 Some useful escape sequences:

Sequence Meaning

\" Double quote

\t Horizontal tab

\\ Backslash

\$ Dollar sign

 So, if we wanted to delimit our previous echo statement with

double quotes, and still have double quotes within our HTML that

was being generated, we could do:

echo "<input type=\"radio\" name=\"favenum\" value=\"".$num1."\"/>";

 So, if we wanted to delimit our previous echo statement with

double quotes, and still have double quotes within our HTML that

was being generated, we could do:

echo "<input type= \" radio \" name= \" favenum \" value= \" ".$num1." \" />";

 One of the advantages of using
double quotes to delimit our
strings is that you don't need to use concatenation to append
or insert variable values

 Unlike other programming languages, any variable names
that are placed within a double quoted string literal will be
expanded – the value of the variable will appear in the
output

 So, there is no need to do
echo "<input type=\"radio\" name=\"favenum\" value=\"".$num1."\"/>";

 We could just do
echo "<input type=\"radio\" name=\"favenum\" value=\"$num1\"/>";

 Or even (if we were willing to accept single quotes in our
HTML output)

echo "<input type='radio' name='favenum' value='$num1'/>";

 This is a PHP-specific thing!

 Don't get in the habit of relying

on this – you can't do it in other languages

 Consider

 PHP:

 echo "Hello there, $name";

 Banana:

 display "Hello there, name"

 PHP variables are easily distinguished from other things

because of their leading dollar sign

 In most other languages, variables easily "blend in" to other

text, so this sort of feature isn't possible

 One important concept to grasp is that each individual page

has no "sight" of any previous pages

page1.php

<?php

$myNum = rand(1,10);

echo "<p>My number was $mynum</p>"

?>

Next page

page2.php

<?php

$echo "<p>The number was $mynum</p>";

?>

 One important concept to grasp is that each individual page

has no "sight" of any previous pages

page1.php

<?php

$myNum = rand(1,10);

echo "<p>My number was $mynum</p>"

?>

Next page

page2.php

<?php

$echo "<p>The number was $mynum</p>";

?>

WOULD

NOT

WORK!

 HTTP – the protocol which transfers web pages between

client and server – is stateless – no state is maintained

between requests

 In English: each individual request for a page exists in its

own bubble

 Short version: there is no way (within the HTTP protocol

itself, at least) to store data and then recall it later down

the line

 There are ways with which we can simulate state

 Cookies – small files that are stored on your computer and

the contents of which get sent with every request for a page

 Hidden input fields:

page1.php

<?php

$myNum = rand(1,10);

echo "<p>My number was $mynum</p>"

?>

<form action="page2.php">

<?php echo "<input type='hidden' name="banana" value='$mynum'/>" ?>

<input type="submit" value="Next page"/>

</form>

page2.php

<?php

$mynum = $_REQUEST["banana"];

$echo "<p>The number was $mynum</p>";

?>

 PHP's session API will simulate state for you

 Behind the scenes, it uses whatever technique (usually

cookies) is needed to transmit data between pages

 Ultimately, all you need to know is that if you put something

in a PHP session variable, it will be available across all the

pages of your website for the duration of the user's session

 At the VERY START of your page, you should have the
command session_start();

 (this is PHP code, so make sure it is enclosed in <?php ?> tags)

 Once you have started a session on a page, you can put data

into it using the $_SESSION variable, e.g.

 $_SESSION["name"] = "Paul";

 You can extract data from a session variable simply by

referring to the variable, e.g.

 $username = $_SESSION["name"];

echo "<p>Your name is $username</p>";

 This can be done on the same page or on a subsequent page

 So the previous page where we used a hidden input field to

store state might be re-written with a session variable thus:

page1.php

<?php

session_start();

?>

…structural HTML here…

<?php

$myNum = rand(1,10);

$_SESSION["banana"] = $mynum;

echo "<p>My number was $mynum</p>"

?>

Next page

page2.php
<?php

session_start();

?>

…structural HTML here…

<?php

$mynum = $_SESSION["banana"];

$echo "<p>The number was $mynum</p>";

?>

 So the previous page where we used a hidden input field to

store state might be re-written with a session variable thus:

page1.php

<?php

session_start();

?>

…structural HTML here…

<?php

$myNum = rand(1,10);

$_SESSION["banana"] = $mynum;

echo "<p>My number was $mynum</p>"

?>

Next page

page2.php
<?php

session_start();

?>

…structural HTML here…

<?php

$mynum = $_SESSION["banana"];

$echo "<p>The number was $mynum</p>";

?>

 On an e-commerce site, it is common to display the contents

of someone's basket prior to going ahead and placing an

order

 The user will have placed items into their basket using a form

 An intermediate screen displays all their items and asks them to

confirm

 A final screen displays a thank you and confirmation message

 All this could be done using session variables:

Shopping form
Display basket

contents for
final confirmation

"Thank you for your
order" page

place order confirm order

Session variables

 Web forms are filled in by the user within their web browser

 Each field in a form usually has a name and a value

 When the user submits the form, the form data is sent to the

server to be processed by a server-side process

 Alternatively, or additionally (or both!) the form data can be

processed by client-side Javascript

 The top level "block" of a form is the form element

 Inside the form element can be a variety of different input

elements

 A submit button, when pressed, will send the form data to

the server

 Any and all user input in PHP we need to get through an

HTML form

 This means that we need to process user input in batches –

we can't mix processing and input

 This means your PHP "program" – or more accurately, your

website – may be split across two or more files

 We can read form fields using the $_REQUEST variable

 Nothing stops us generating a form dynamically – in fact for

things like pull down lists and radio buttons we might have

to do that

 HTTP is stateless – every individual request is its own thing

and has no "sight" of any other

 There are ways around this – in PHP we have the session API

 Use the $_SESSION variable to put items into the session

 These variables persist across pages for the duration of the

user's browser session on your site

